首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
针对混合高斯模型背景建模在视频运动目标检测中的不足,提出了将混合高斯模型与三帧差分相结合来对视频中运动目标进行检测的算法。由混合高斯模型得到前景和背景,利用当前帧与混合高斯模型所得到的背景相减可以得到一个前景,使用三帧差分和边缘检测得到运动物体的精确轮廓,对此轮廓进行填充得到一个前景,将此三步前景进行运算得到最终的结果;通过新的更新策略来快速地对背景进行建模,以像素点的稳定性来调整像素点的更新速度,从而减少算法运算量,提高算法的运行速度。  相似文献   

2.
针对混合高斯模型背景建模在视频运动目标检测中的不足,提出了将混合高斯模型与三帧差分相结合来对视频中运动目标进行检测的算法。由混合高斯模型得到前景和背景,利用当前帧与混合高斯模型所得到的背景相减可以得到一个前景,使用三帧差分和边缘检测得到运动物体的精确轮廓,对此轮廓进行填充得到一个前景,将此三步前景进行运算得到最终的结果;通过新的更新策略来快速地对背景进行建模,以像素点的稳定性来调整像素点的更新速度,从而减少算法运算量,提高算法的运行速度。  相似文献   

3.
混合交通是我国交通的主要特征,利用视频检测技术可以获取混合交通流参数,实现混合交通的有效管制,由于检测过程中天气、光线等环境变化,实时有效的自适应背景提取模型尤其重要。本文在混合高斯模型的基础上,根据运动分割与Kalman运动跟踪,结合象素的时间与空间特性,提出区域选择更新混合高斯模型来抽取背景,克服了交通控制信号或交通阻塞等造成的长时间停车,以及高峰期大量运动物体长期充满当前图像等情况对背景抽取造成的影响,该模型通过对交叉口和路段视频进行背景提取,实验效果良好,证明了本方法具有较强的鲁椿性和自适应性。  相似文献   

4.
采用分层组织的形式将传统高斯混合模型分为背景层、竞争层和噪声层,各层分别采用不同的更新机制,在各层之间引入晋级和降级机制以纠正可能存在的误判。采用基于轮廓检测的噪声滤波实现噪声层更新以消除噪声,并利用直方图匹配检测伪前景区域以提高对背景变化的适应能力。使用停车场视频和铁路客运站候车室视频对改进后高斯混合模型的检测效果进行了验证。验证结果表明:改进的高斯混合模型有效避免了长期静止的目标被融入背景,降低了光线突变或摄像机噪声的干扰,加快了背景改变时模型的更新速度,目标检测速度比传统GMM提高了10%。检则方法满足了铁路客运站智能视频监控实时性和准确性的要求,为视频分析奠定了基础。  相似文献   

5.
针对道路监控固定图像传感器采集的交通视频图像,开展动态场景下障碍物的检测研究。通过道路感兴趣区域的建立,提取停止车辆和遗撒物的共同特征,提出多态几何约束的障碍物检测算法,实现障碍物的检测;通过对仿真视频和实际道路采集的视频进行实验,结果证明该方法对障碍物检测的鲁棒性高,实际的检测效果较基于混合高斯模型的背景差分法的结果更好。  相似文献   

6.
应用小波模历史图像的运动车辆视频检测   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高车辆目标检测的稳定性和准确性,提出了基于背景减除和小波分解模历史图像的运动车辆检测算法.首先对原始图像进行小波分解,对低频分量用混合高斯模型和纹理特征相结合的方法,自适应更新背景并标记运动目标初始区域;然后,基于高频分量计算模值,并通过逐帧历史累积得到模历史图像;最后,利用车辆目标与阴影相比富含边缘细节的特点,对目标进行倾斜校正后,将目标边缘分别沿图像x和y方向投影,利用投影曲线将边缘信息与目标初始区域信息迭代融合,得到最终检测结果.实验结果表明,用本文方法检测车辆的捕获率达到99.0%,有效率为92.5%;与使用单一自适应背景提取方法相比,在实际交通场景中可有效处理阴影导致的多目标粘连问题,检测结果更准确.  相似文献   

7.
为解决混合交通流饱和流率测算的实时性和时变性问题,实时获得混合交通流的饱和流率用以信号配时,本文提出基于自动车牌识别数据(Automatic License Plate Recognition,ALPR)的混合交通流饱和流率实时自动估计方法。首先,分信号周期提取车头时距数据,在当前车和后车车辆类型确定时车头时距满足同一正态分布的假设基础上,构建车头时距的高斯混合模型并应用 EM(Expectation Maximization) 算 法 求 解 ;其 次 ,基 于 赤 池 信 息 准 则 (Akaike Information Criterion,AIC)选取高斯混合模型的最优个数,拟合数据得到高斯混合模型参数;最后,根据车头时距的高斯混合模型推算出混合交通流饱和流率。以杭州城市道路3条路段的ALPR数据为例,分析基于 ALPR 数据获取车头时距的采样误差,对模型进行验证,并与传统的 HCM(Highway Capacity Manual)方法进行对比。结果表明:基于ALPR数据的车头时距采样误差满足精度要求; 与HCM的实测法相比,模型所得的混合饱和交通流率相对误差小,结果准确;该方法与传统的标准车流饱和流率折算法效果相近,并考虑混合交通流时变特性,能自动部署实时计算,鲁棒性良好,有实际应用意义。  相似文献   

8.
目前最常用也最有效的运动目标检测方法是背景减除法,其中背景提取是背景减除法的核心.传统的运动目标检测方法无法解决场景的光线突变、背景图像发生变化以及前景运动目标物体的阴影干扰等问题.针对交通视频中背景模型的实际情况,采用混合高斯分布对视频背景进行建模,将前一帧视频图像与所建立的当前背景图像进行相减,得到车辆在当前时刻的运动图像,并将所得图像进行形态学去噪处理.通过相关的仿真实验,证明了该方法能够比较准确地检测出前景运动车辆目标.  相似文献   

9.
为从广域的视角准确全面地采集连续交通流信息,针对悬停无人机视频提出了基于形态分析的车辆自动识别方法。首先,人工勾画视频帧图像的感兴趣区域,并进行灰度化处理;其次,基于感兴趣区域的Canny边缘检测结果生成亚像素级骨架图像,并对图像骨架进行分解和重构处理;然后,综合应用形态学运算(膨胀、腐蚀、填充、闭运算)和连通域形态特征(面积、矩形度、等效椭圆长轴与短轴)识别车辆目标;最后,对548帧无人机视频图像分别进行算法检测和人工识别,并计算车辆识别的正检率、重检率、漏检率和错检率。结果表明:该算法具有较高的正检率(均值95.02%),较低的重检率(均值2.20%)、漏检率(均值2.77%)和错检率(均值8.24%);同时,正检率、重检率、漏检率和错检率标准差分别为2.09%、1.67%、1.67%和2.56%,表明算法性能指标值离散程度较小、稳定性较高。  相似文献   

10.
为了准确获得图像感兴趣区中运动车辆的形状特征,提出了一种新的车辆边界轮廓提取算法.利用连续3帧图像,对包含同一运动车辆的图像感兴趣区进行光流场分割,以获取目标运动区域,通过平移运动区域的左、右边界获得正确的车辆区域及其封闭边界轮廓,通过放大运动矢量计算公式的阈值来提高其运行效率.试验结果表明:该算法可从具有复杂自然场景的图像序列中检测出完整的运动车辆边界轮廓,检测正确率在95%以上.  相似文献   

11.
为提升驾驶员特征聚类方法的适用性与可靠性,本文基于机动车运行轨迹分析提出考虑交通运行条件影响的驾驶员特征聚类改进方法。首先,经过对车辆运行轨迹数据的分析发现,不同道路类型和平均速度条件会显著影响驾驶行为的集计特征;其次,提出改进的驾驶员特征聚类方法,第1步设计考虑道路类型与平均速度因素的车辆轨迹的切片和分类方法,从而稳定提取典型交通条件下的驾驶行为特征参数,第2步选用高斯混合模型聚类驾驶员特征。聚类案例表明, 在相同的道路类型和平均速度条件下,驾驶员类型越激进,其速度变异系数、加速度标准差和平均减速度等参数均值越高。不同聚类方法的对比表明,改进方法在驾驶员聚类的类内聚集度和类间分离度方面均表现更好,能有效提升驾驶员聚类的适用性与可靠性。  相似文献   

12.
基于视频的交通流检测在智能交通系统中具有重要意义.本文针对广泛采用的低位摄像机,提出了一种交通流特性参数的检测分析方法.首先基于三级虚拟检测线和自适应更新率局部背景建模来快速提取车辆特征点并消除活动阴影对提取精度的影响;然后基于Adaboost(Adaptive Boosting, 自适应增强)分类器实现特征点按车分组,并在跟踪过程中根据运动特征相关度消除分组误差,获取高精度的车辆轨迹;进而自动生成多车道轨迹时空图并提取各车道交通流的多种特性参数.实验结果验证了算法的高效性;同时,自动生成的多车道轨迹时空图也为更多的交通信息获取和更深入的交通流特性分析提供了有力支持.  相似文献   

13.
基于视频的交通流检测在智能交通系统中具有重要意义。本文针对广泛采用的低位摄像机,提出了一种交通流特性参数的检测分析方法。首先基于三级虚拟检测线和自适应更新率局部背景建模来快速提取车辆特征点并消除活动阴影对提取精度的影响;然后基于Adaboost(Adaptive Boosting,自适应增强)分类器实现特征点按车分组,并在跟踪过程中根据运动特征相关度消除分组误差,获取高精度的车辆轨迹;进而自动生成多车道轨迹时空图并提取各车道交通流的多种特性参数。实验结果验证了算法的高效性;同时,自动生成的多车道轨迹时空图也为更多的交通信息获取和更深入的交通流特性分析提供了有力支持。  相似文献   

14.
信号交叉口对城市道路的通行能力以及车辆的燃油消耗具有重要影响。本文提出一种在自动驾驶车辆和人工驾驶车辆混合交通流环境下的自动驾驶车辆的轨迹优化方法。基于交叉口信号灯的配时方案,构建车辆旅行时间估计模型,并以自动驾驶车辆燃油消耗最小以及通行效率最大为目标,构建自动驾驶车辆轨迹优化模型,对车辆进行动态轨迹规划和控制。车辆轨迹滚动优化模型采用高斯伪谱法进行离散化求解,并基于SUMO仿真平台对模型结果进行验证。仿真结果表明,自动驾驶车辆可以通过优化自身控制变量影响人工驾驶车辆的运行状态,减少交通流的排队以及时走时停现象。本文提出的车辆轨迹优化方法对于降低车队整体燃油消耗、提升车队平均速度、缩短平均行程时间具有重要作用。  相似文献   

15.
为量化大型车对城市道路交通运行的影响,提出基于大量车牌识别(License Plate Recognition, LPR)数据研究路段、交叉口左转、交叉口直行这3类车头时距,分析大型车影响的方 法。首先,将LPR数据按采集位置划分,提出差异化数据预处理流程,得到用于考察不同车道条 件下4类过车组合的车头时距集合;然后,以高斯混合模型(Gaussian Mixed Model, GMM)、对数正 态混合模型及高斯/对数正态混合模型这3类共13个子模型分别对上述所有集合建模,以最大期 望算法求解参数;之后,以Kolmogorov-Smirnov检验排除不满足要求的模型,综合赤池信息准则 与最小描述长度准则对剩余模型择优;最后,基于最优模型参数定量评价大型车对不同类型车道 的影响。以某城市区域多个卡口与电子警察设备采集的大量LPR数据验证方法有效性。结果表 明:路段与交叉口、交叉口各功能车道的车头时距不符合同一分布,宜区分建模;3个密度分支的 GMM拟合各类车头时距集合均有最佳表现,其他模型在不同阶段体现出不适应性;各种车道条 件下,大型车对相关过车组合的车头时距均值及标准差均有不同程度的影响,且该影响按照路 段、交叉口左转、交叉口直行的顺序依次递减。拟合结果可供大型车影响评价借鉴。  相似文献   

16.
基于OVM模型的交通流混沌研究   总被引:1,自引:0,他引:1  
研究基于OVM模型的交通流混沌问题。用Matlab结合C 语言编写OVM模型的仿真程序来产生交通流时间序列。在一定的参数组合下,仿真研究交通流车队中不同序号的前后车辆之间的车头间距变化过程。通过分析这种车头间距变化过程的变化曲线并利用小数据量方法计算Lyapunov指数,证明了基于OVM模型产生的交通流中存在着混沌现象。讨论模型参数和仿真试验参数对该理论交通流运动状态的影响,给出相应的仿真研究结果,得出对于研究与应用交通流理论有益的结论。  相似文献   

17.
针对道路车辆目标检测传统方法需随场景变化提取不同特征, 检测率较低与鲁棒性差的问题, 提出了一种基于Darknet框架下YOLO v2算法的车辆多目标检测方法; 根据目标路段场景与车流量的变化对YOLO-voc网络模型进行改进, 基于ImageNet数据集和微调技术获得分类训练网络模型, 对训练结果和车辆目标特征进行分析后进一步调整改进的算法参数, 最终获得更适合于道路车辆检测的YOLO-vocRV网络模型下车辆多目标检测方法; 为验证检测方法的有效性和完备性, 采用不同车流密度进行了车辆多目标检测试验, 并与经典YOLO-voc、YOLO9000模型进行了对比; 采用改进YOLO-vocRV网络模型, 选取20 000次迭代, 分析了多目标检测结果。试验结果表明: 在阻塞流样本条件下, YOLO9000网络模型检测率为93.71%, YOLO-voc网络模型检测率为94.48%, 改进YOLO-vocRV网络模型检测率达到了96.95%, 因此, 改进网络模型YOLOvocRV检测率较高; YOLO-vocRV模型精确度和召回率均聚集在0.95, 因此, 在获得较好精确度的条件下损失的召回率明显较小, 达到了很好的折中; 采用混合样本训练后, 基于YOLO-vocRV模型的车辆多目标检测方法的检测率在自由流状态下可达99.11%, 同步流状态下可达97.62%, 阻塞流状态下可达到97.14%, 具有较小的误检率和良好的鲁棒性。   相似文献   

18.
混合车流微观仿真模型校正方法研究   总被引:1,自引:0,他引:1  
为了合理准确地模拟车辆间性能差异较大的混合车流,需要从微观层面来校正仿真模型. 针对不同车型和不同道路设施单元, 提出了一套基于混合车流特性的微观仿真模型校正方法,包括参数的敏感性分析、模型参数的校正及校正效果评价等. 最后,借助微观仿真软件CORSIM对高速公路路段仿真模型进行实例验证. 结果显示,在所有车辆平均行程时间满足校正目标的情况下,分车型校正能够保证仿真车型合理表达实际车型的交通特性,证实了校正方法的可行性.  相似文献   

19.
基于一维元胞自动机模型的交通流混沌研究   总被引:1,自引:1,他引:0  
应用交通流一维元胞自动机模型进行仿真试验,研究理论交通流的混沌现象.仿真中选取某一观测点记录车辆到达该点的车头时距,应用非线性分析软件TISEAN计算该车头时距序列的Lyapunov指数谱和Kolmogorov熵.试验结果证明交通流中存在混沌现象.从试验结果分析找出了产生交通流混沌现象的2个因素:车辆密度和车辆减速概率.当车流密度超过某一值时仿真出的交通流会产生混沌现象,而出现混沌的根本原因在于交通流的内在随机性,其中车辆不规则的加速、减速是这种内在随机性的主要因素.  相似文献   

20.
为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号