首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
铁道客车车体垂向弹性对运行平稳性的影响   总被引:3,自引:0,他引:3  
建立了包含结构阻尼的铁道车辆垂向刚柔耦合动力学模型。运用该模型,采用基于虚拟激励法的快速平稳性算法,研究铁道客车车体弹性对运行平稳性的影响。研究表明,当车体弹性低至一定数值时,将导致车体强烈振动。运行速度越高,对车体的刚性要求越高。运用本文方法,可以获得运行平稳性对车体垂向一阶弯曲频率的要求。在算例中,当车体的垂向一阶弯曲频率达到10Hz以上时,车体弹性对平稳性的影响不大。研究还表明,当车体弹性较低时,提高车体结构阻尼和一系垂向阻尼系数,一定程度上可以抑制车体的弹性振动。  相似文献   

2.
铁道客车车体垂向弹性对运行平稳性的影n向   总被引:4,自引:0,他引:4  
建立了包含结构阻尼的铁道车辆垂向刚柔耦合动力学模型.运用该模型,采用基于虚拟激励法的快速平稳性算法.研究铁道客车车体弹性对运行平稳性的影响.研究表明,当车体弹性低至一定数值时,将导致车体强烈振动.运行速度越高,对车体的刚性要求越高.运用本文方法,可以获得运行平稳性对车体垂向一阶弯曲频率的要求.在算例中,当车体的垂向一阶弯曲频率达到10 Hz以上时,车体弹性对平稳性的影响不大.研究还表明,当车体弹性较低时,提高车体结构阻尼和一系垂向阻尼系数,一定程度上可以抑制车体的弹性振动.  相似文献   

3.
为研究车轮滚动及轨道板激励与车辆固有频率匹配关系,首先对某动车车体进行静态台架模态试验,识别车体固有模态参数;然后在某线路上测试车体振动加速度,识别车体在各互功率谱峰值处ODS变形。通过理论计算车轮滚动频率与某高阶变形频率接近,该频率下车体变形为车轮滚动激励所导致;在速度250km/h,轨道板激励频率与车体1阶垂弯频率接近,车体1阶垂弯变形被轨道板激励频率激发,车体能量较大,垂弯振动较为剧烈,车体中部和转向架上方地板振动较大。轨道板激励导致车体强迫共振。  相似文献   

4.
考虑车体弹性效应的铁道客车系统振动分析   总被引:13,自引:0,他引:13  
曾京  罗仁 《铁道学报》2007,29(6):19-25
建立了铁道客车垂向振动系统数学模型。将车体看成两端自由的均质等截面欧拉梁,并考虑二系悬挂采用半主动减振器,导出客车系统的运动微分方程组,给出客车系统各模态共振速度的定义和计算公式。共振速度是车辆系统的固有属性,车体弹性振动各模态共振速度由车体的自振频率和车辆定距决定。计算车体一阶和二阶弯曲振动共振速度及对应的轨道波长,进行了客车系统在轨道简谐输入情况下的幅频特性分析和随机输入情况下的随机响应分析。通过计算可知,为了减小车体垂向共振峰值,车体一阶弯曲自振频率应尽量离开构架的浮沉自振频率;由于车体弹性振动的影响,车体端部的振动加速度和位移要大于中部,弹性车体模型的平稳性指标大于刚性车体;采用半主动减振器能够显著降低车体的加速度、位移和平稳性指标,但会使构架的加速度和位移有所增大。  相似文献   

5.
为研究弹性悬挂设备对列车整备车体模态的影响,将车体结构等效为自由梁,建立车体结构的n阶垂弯振动方程,并联合车体结构与设备的刚体振动,建立整备车体的刚柔耦合运动方程。通过求解系统运动方程的特征根问题,得到设备的质量、悬挂频率和悬挂位置对整备车体模态的影响规律。结果显示,当弹性悬挂设备的悬挂频率远小于车体结构1阶垂弯频率时,其质量和位置对整备车体模态影响较小,但当其悬挂频率接近车体结构1阶垂弯频率时,将使整备车体1阶垂弯频率急剧减小,且设备越靠近车体中央位置,减小越明显。  相似文献   

6.
对某型地铁车辆整备状态有限元模型进行了模态和5~100Hz正弦激励仿真计算,分析设备吊挂刚度对车体地板的振动影响。计算结果表明,车下设备吊挂刚度对弹性车体的各种振动模态均有不同程度的影响;车体空气弹簧位置激励时,地板在不同吊挂刚度时的振动响应主要集中在40Hz以内,合适的设备吊挂刚度可有效的降低地板的振动幅值并增加一阶垂弯频率,吊挂刚度对地板在12Hz以上的振动响应影响不大,同时发现刚性吊挂有助于增加车体的刚度;设备激励时,引起地板振动响应主要集中在20Hz以下,激励频率在车体一阶垂弯模态频率附近时,弹性吊挂刚度小于一定值时才能有效地减小地板振动的响应幅值。  相似文献   

7.
本文提出计算整备状态下高速列车车体垂向一阶弯曲模态频率的数值及解析方法,研究并阐释车下设备对整备状态下车体模态频率的影响机理。基于解析方法及隔振理论,提出车下设备与车体模态匹配原则,设计车下设备悬挂参数,并针对设计结果进行试验验证。结果表明,数值方法计算精度高,但不便于工程运用,而解析方法在保证计算精度的同时,能够直接运用于车下设备悬挂设计;相对于刚性吊挂而言,车下设备采用弹性吊挂时,整备状态车体的垂向一阶弯曲模态频率会得到明显提升;车体与车下设备模态频率的合理匹配可有效避免二者间共振的发生,针对所研究的高速车辆,当独立设备固有频率设计为6.5Hz时,设备自振频率能够与车体垂向一阶弯曲模态频率有效分开。在整个运行速度区间内,车辆可以获得良好的运行平稳性,同时车下设备振动亦不剧烈。  相似文献   

8.
以25G型硬座车钢结构车体为例,在HyperMesh中利用CQUAD4、CTRIA3等单元建立该车体有限元模型,通过改变底架边梁及上弦梁单位质量的惯性矩来控制车体单位质量刚度的变化。计算结果表明:对于底架边梁,车体一阶垂弯和一阶横弯频率随着底架边梁垂向结构刚度的增加线性递增,初期斜率较高,后期斜率较低;车体一阶垂弯和一阶横弯频率则随底架边梁横向刚度增加全程以二次多项式形式递增。对于上弦梁,车体一阶垂弯频率随着其结构刚度的增加基本不变,而一阶横弯频率则呈二次多项式关系逐渐增加。利用上述模态变化规律,可辅助开展车体固有振动特性研究,有助于针对具体优化部位进行形状和厚度等参数选择,以避开外部激励引起的共振,提升车体钢结构整体模态性能。  相似文献   

9.
根据考虑和不考虑轮对振动位移的高速列车垂向振动广义Ruzicka隔振模型,通过方程变换,得到便于数值积分求解的高速列车垂向振动状态空间表达式。在此基础上,应用随机振动理论研究高速列车的垂向振动特性,并比较分析2种模型之间的差别;基于考虑轮对振动位移的高速列车垂向振动广义Ruzicka隔振模型,分析减振器阻尼参数对列车振动响应的影响,并以车体垂向振动加速度、二系悬挂垂向行程、构架垂向振动加速度、一系悬挂垂向行程均方根值为目标,应用评价函数法,建立高速列车垂向减振器阻尼参数优化方法。由分析结果可知,该优化方法可进一步改善列车的运行品质,为高速列车垂向减振器阻尼参数的选取提供了有益参考。  相似文献   

10.
为找出高速列车车体主要模态对车辆振动的影响规律,引入BGCI向量法对车体模态贡献量进行计算。建立某高速列车刚柔耦合模型,采用随机子空间法对车辆工作模态参数进行识别,通过模态置信判据MAC对主要模态进行判定,计算在不同运行速度下车体的模态贡献量。结果表明,车体刚体模态贡献量随列车运行速度增加逐渐减小,当列车运行速度低于120km/h时,车辆刚体模态贡献量大于弹性模态,速度高于120km/h时反之。当列车速度大于80km/h时,车体的菱形模态、垂向弯曲模态、扭转模态对车体振动贡献值逐渐增大(最大为0.035m/s2),弹性模态对振动贡献量明显增加。本文研究的模态贡献量与车辆振动关系可以为车辆振动控制提供理论支撑。  相似文献   

11.
针对某高速列车铝合金车体,对其进行静、动态特性的有限元分析,结果表明整备状态下的车体一阶垂弯频率较低。以提高车体的一阶垂弯频率为目的,利用灵敏度分析方法,计算车体的一阶垂弯频率灵敏度,质量灵敏度以及相对灵敏度。基于相对灵敏度的分析结果,确定对模态频率变化敏感的结构区域,并选取以车顶、边梁、端墙及底板等型材的厚度为设计变量的优化模型进行结构优化。优化后的车体一阶垂弯频率提升5.5%,达到11.14Hz,有效地提高了车体的动态刚度。  相似文献   

12.
为了降低高速客车车体的弹性振动,提出在车体表面进行压电分流阻尼处理的方案.在将车体视为两端自由等截面欧拉梁的基础上,建立铁道客车刚柔耦合系统垂向动力学模型,模型中包含车体结构阻尼和压电元件.通过幅频特性分析确定系统各部件固有模态.选取压电元件,比较分流电路,确定压电陶瓷最佳安装位置,建立压电分流电路数学模型.数值分析显示:车体一阶弯曲自振频率接近人体振动敏感区域,必须首先降低一阶弯曲振动.对于车体一阶弯曲振动的控制,压电元件应该贴附在车体中部.压电分流电路的电感值与电阻值取最优值时,可明显降低车体一阶弯曲振动峰值.  相似文献   

13.
针对孟买地铁车辆,运用刚柔耦合的车辆振动模型,研究弹性车体与构架耦合振动,分析车体弹性对平稳性的影响。分析表明,车体刚度越大,车体弹性对平稳性的影响越小;随着转向架一系垂向刚度的增加,构架的浮沉频率会逐步增加;通过参数优化,当构架浮沉频率与车体垂向一阶弯曲频率相近时,不会发生车体垂向弯曲共振现象。  相似文献   

14.
为研究车体与动力包结构耦合振动特性,计算车体固有模态以及低阶振型,建立了包含车下吊挂动力包的城轨车辆刚柔耦合振动模型,优化分析了动力包结构吊挂参数对车体振动特性的影响。计算结果表明:车体一阶弯曲频率对车辆垂向性能的影响要大于二阶弯曲频率。将动力包的振动以周期激励形式输入模型,当激振频率达到9.5 Hz和16.5 Hz时分别与车体的一阶和二阶弯曲频率相叠加,在此频率下车体的平稳性指标迅速恶化,因此在车辆设计过程中应尽量避免发生该频率下共振。  相似文献   

15.
轨道交通车体轻量化是降低运营能耗、减轻轮轨间动力作用的重要手段,但车体轻量化使得车体模态频率下降,致使车体弹性振动加剧,增加结构共振的风险。研究表明,通过优化承载结构来提高整备状态下车体模态频率的效果非常有限。提出运用承载结构模态频率和整备状态质量来估算整备状态下车体模态频率的公式,以及通过下吊设备弹性悬置实现大幅提高车体整备状态垂向弯曲频率的方法,并给出悬置质量与整备状态频率的关系式。运用有限元分析模型对关系式的验证表明,简化估算公式具有很高的准确性,对车体垂向弯曲频率的优化具有指导意义。  相似文献   

16.
合理的高速车体结构设计不仅能最大程度发挥车体结构的承载能力,也能减小车体振动,提高乘坐舒适度。为研究车体结构参数对车体模态频率的影响,建立了车体结构有限元分析模型,深入分析车体结构各部件主要尺寸的厚度变化对车体模态特性的影响,得到了内外地板、侧墙内壁及车顶等厚度尺寸对车体垂弯、扭转和菱形模态频率影响规律。结果表明,车顶厚度的变化对车体模态频率及车体弯扭频率比的影响最大,从而为车体结构的动态设计提供依据。  相似文献   

17.
为了抑制车体垂向弯曲振动,提高铁道车辆乘坐舒适度,开发了一系悬挂阻尼控制系统.本文介绍了此系统的构成,并介绍了装有开发的可变一系垂向减振器的车辆在新干线数条线路上的运行试验情况.试验结果表明,该系统能有效降低车体一阶弯曲模态的垂向振动加速度,并改善乘坐舒适度.  相似文献   

18.
推导了多自由度刚体振动系统振动频率和特征向量的解析方法,研究了轨道交通车辆车体设备悬挂方式及其垂向悬挂刚度与车体系统振动频率和车体各阶振幅之间的关系。以某轨道交通车辆车体模态分析为例,对车体模态分析过程中悬挂设备的模拟方法、车体内装和设备的刚度,以及乘客质量对车体一阶垂弯和扭转频率的影响进行了深入分析和试验对比。研究结果表明,设备悬挂方式和悬挂刚度的选择对车体频率有非常显著的影响;与试验相比,考虑设备悬挂刚度、内装和设备自身刚度时对车体主要振动模态有显著提升,应在车体结构设计时予以注意;乘客质量对车体主要振动模态频率几乎没有影响。  相似文献   

19.
基于Timoshenko梁的振动理论,结合车体结构自身的特点,建立了车体结构一阶垂向弯曲频率的解析计算方法。通过引入截面有效剪切系数的概念,结合截面剪切形状系数,一起考虑车体闭合截面的剪切对固有频率的影响,引入车体垂向形心变异系数对一阶垂向弯曲频率解析式进行修正。利用有限元法和车体模态试验对该解析方法进行了验证。结果显示,车体一阶垂向弯曲频率解析值与有限元结果的误差为2.8%,与试验结果的误差为1.7%,车体垂向形心变异系数对一阶垂向弯曲频率影响最大。  相似文献   

20.
针对传统的随机振动分析方法计算复杂、计算量大的问题,提出采用虚拟激励法求解轨道车辆的垂向振动响应,建立某型车辆的垂向动力学模型,求解车辆的垂向振动响应并验证模型的正确性.与传统求解方法的计算结果比较表明,虚拟激励法适合于求解车辆的垂向振动响应,并且计算简单.在频域内对车辆垂向振动响应的分析表明:随着车辆运行速度的提高,车体、前后转向架以及一位轮对的垂向加速度的功率谱密度和振动主频均增大,轮对的垂向振动经一系悬挂传到转向架,再经二系悬挂传到车体,其振动频率f降低,振动幅值迅速减小,传到车体上时振动已变得很弱;f>5Hz时,车体、前后转向架和一位轮对垂向加速度的功率谱密度均随着一系阻尼器两端橡胶节点刚度与一系弹簧刚度比值的增大而增加,尤其是车体和前后转向架的垂向加速度的功率谱密度变化更为明显,因此降低橡胶节点的刚度有利于提高车辆运行的平稳性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号