首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
分析了我国现有干线货运机车风源系统现状,指出现有设计方法的局限性.提出了使用仿真手段确定机车风源系统的方法,给出了60辆及120辆编组列车初充气和制动后再充气的仿真结果并与试验结果对比,两者吻合较好.用仿真方法优化了空气压缩机排气量,结果表明在现有基础上减小压缩机排气量压缩机工作率明显提高,对列车缓解波速及再充气时间没有影响,初充气时间稍有延长.计算机仿真方法为机车风源系统的优化设计提供了方便、有效的手段.  相似文献   

2.
采用理论计算与试验验证相结合的方式对列车风区运行气动性能进行了研究.首先利用主流CFD分析计算方法,对挡风设施条件下的高速列车施加运行速度和横风风速以建立空气动力学仿真模型,对模型进行计算得到不同工况下列车的流场情况.其次,通过实车试验,实时获取列车风区运行时空气动力学性能(两侧压差)数据,以此分析列车在不同的线路条件和横风风速下两侧压差的变化规律.通过分析得出,列车在风区运行通过挡风设施过渡段时两侧压差发生突变,且伴随列车晃车现象影响行车安全.通过对多处过渡段区域重复试验和分析列车车体横向加速度变化情况,得出风区过渡段是列车运行薄弱环节的结论.实验数据对比了列车在过渡段工程补强前后的两侧压差情况,结论为进行工程补强后,两侧压差可减小30%~80%,其中最大减小为84.89%,工程补强效果可以明显的减小过渡段区域强风对列车的影响.  相似文献   

3.
为研究列车进出风屏障段时所受突风效应的影响,以一高速铁路多跨简支梁桥为研究对象,通过风洞试验测试了风屏障在100.0%、43.5%和0透风率情况下车-桥系统的气动特性;基于哑元耦合法,建立了风-车-桥系统分析模型,开展了两种风屏障布置形式(通长和非通长)时风屏障透风率和列车车速对列车动力响应的影响分析. 研究结果表明:设置风屏障时桥上列车的气动特性存在较大差异,尤其列车气动阻力系数在风屏障透风率0比透风率100.0%时减少87%;当风屏障通长布置时,风屏障防风效果显著,随着透风率的减小,列车动力响应大幅减小,其中轮重减载率减小达53%;当风屏障非通长布置情况时,列车在进入和离开风屏障区段时,突风效应对列车的横向加速度和竖向加速度均影响显著,透风率越低,加速度响应变化越剧烈,但对于轮轴横向力和轮重减载率的影响有限;随着车速的提高,突风效应造成的加速度响应总体上增大,呈明显的非线性变化.   相似文献   

4.
研究了机车智能化风源系统相关技术,对传统的风源系统进行全面升级,通过对空气压缩机、干燥器运行状态和压缩空气湿度、含油量、固体颗粒度的实时监测,掌握供风设备运行状态和压缩空气品质;空气压缩机采用变频智能控制,根据监测数据,调节电机转速,解决空气压缩机油乳化问题;干燥器采用干燥再生智能转换控制,在空气压缩机各种运行工况下,实现干燥塔干燥再生柔性转换.此外,人机交互界面的实时信息反馈,为司乘人员和检修维护人员的运用维护提供了便利.  相似文献   

5.
为量化机车编组方式对重载列车再充气特性的影响,结合神华铁路万吨重载列车纵向动力学试验结果,对万吨重载列车再充气特性进行分析,并利用基于气体流动理论的空气制动系统仿真方法,建立列车空气制动系统模型,通过试验对比验证仿真系统的准确性,对不同机车编组、多机车不同滞后时间和不同减压量的再充气过程进行仿真。计算结果表明:列车头部机车数目增加对首车再充气特性影响较小,2种编组列车的副风缸压强差值小于15kPa;单编列车充风时间是3辆机车编组充风时间的2.4倍;当机车集中于列车前部时,充风时间缩短量与机车数目增加量非正比关系,即3辆机车集中编组的充风时间不是单编列车充风时间的3/10;机车数目对于充风时间的影响完全取决于编组方式,分散编组减压50kPa的充风时间较集中编组节省37%~75%,机车集中编组减压110kPa的充风时间是分散编组的1.5~3.5倍,分散编组常用全制动的充风时间为机车集中编组的30%~63%;从控机车滞后时间对充风时间影响较小,充风时间增长量与滞后时间相近;得到4种机车编组方式不同减压量的充风时间的二次拟合函数,随着减压量的增加,4种机车编组的充风时间增长缓慢。  相似文献   

6.
建立了风屏障在突变风与列车风耦合作用下的三维仿真模型,分别研究了透风率为30%的风屏障在横风、突变风及车致脉动风耦合作用的气动响应,分析了其表面的气动压力分布特征及原因.结果表明,风屏障受到横风与车致脉动风耦合作用时,车致脉动风产生的压力对风屏障起主要作用,横风作用减小了风屏障所受头波的正压峰值,增大了其尾波的负压峰值.当风屏障在受到突变风(风速平均值13.8 m/s)与车致脉动风耦合作用时,风屏障所受的压力比横风(风速13.8 m/s)作用下大得多,情况复杂也得多,风屏障所受的头波正压峰值扩大了9.7倍,尾波负压峰值扩大了2.4倍,气动压力变化率增大了2.5倍,持续作用时间增大了2.4倍.  相似文献   

7.
地铁运输系统是城市公共系统中最大的耗能系统,列车节能运行具有重要的意义. 结合地铁列车运行特点与机车操纵规则,提出了在起伏坡道与定时约束条件下地铁列车节能运行的两阶段优化方法. 第一阶段,建立了寻求站间最佳惰行控制次数及惰行控制点的优化模型;第二阶段,建立了合理分配各个站间区间列车运行时间的优化模型. 设计了基于遗传算法的优化模型求解算法. 与既有方法相比,在运行时分相同条件下,经过两阶段优化后,列车运行能耗下降了19.06%,列车运行恢复正点的能力也得到了提高.  相似文献   

8.
斜拉桥在考虑风效应时的车-桥耦合振动   总被引:3,自引:0,他引:3  
以芜湖长江大桥为算例,考虑风荷载作用于列车和桥梁上,对ICE高速列车以200km/h的速度通过桥梁时,计算了与列车运行安全性及旅客乘座舒适度相关的指标.风荷载考虑为脉动的,按Simiu谱用MonteCarlo法模拟脉动风速,结合由风洞试验测定的空气动力参数,计算了作用于列车和桥梁上的自然风荷载.根据结构动力学理论,建立了机车(车辆)的动力学方程;建立了桥梁的有限元振动方程;桥上轨道不平顺按6级线路(最好的线路)模拟.计算结果表明,对芜湖长江大桥,桥上允许行车的桥面处横桥向最大风速应小于30m/s.  相似文献   

9.
针对列车车钩承压偏转行为,分析了机车结构参数与车钩转角之间的关系,通过建立由3节新型33t轴重C0-C0轴式重载机车与2组具有钩肩特性、缓冲器迟滞特性的圆销钩缓装置组成的列车动力学模型,研究承压工况下机车结构参数对车钩转角与列车运行性能的影响.计算结果表明:在列车车钩自由转角为8°时,承压时车钩的实际转角达不到8°,此时车钩钩肩不发生作用,稳钩力由机车二系止挡提供,车钩横向力全部传递至轮对,导致机车的轮轴横向力超标;提高二系止挡间隙或降低止挡间距等参数,可以增加车钩的转角,减小车钩横向力,降低轮轴横向力,提高列车的运行安全性;在重载机车车钩选型中,应该考虑机车结构参数与车钩自由转角的匹配关系.  相似文献   

10.
���ڴ���ͨ�ŵ��г�ʵʱ����ͨ�ŵ����   总被引:4,自引:1,他引:3  
为了保障列车行车安全,机车上都配置了列车运行监控记录装置和TAX2型监测装置,实时检测和记录列车运行参数,这些实时的列车运行参数同时也是其它的列车车载系统必需的基础数据条件。介绍了一种通过串口通信,动态获取列车运行参数的接口方案,阐述了相应的硬件连接方式和软件程序设计,其中采用了Windows多线程编程技术,还根据列车运行线路中存在长短链或基本线路变换的情况,设计了一种公里标突变识别并同时进行数据纠错的算法,实时接收数据的误码率为0.02%,实现了列车车载系统与列车现有监控装置之间可靠有效的联接。  相似文献   

11.
以芜湖长江大桥为算例,考虑风荷载作用于列车和桥梁上,对ICE高速列车以200km/h的速度通过桥梁是,计算了与列车运行安全性及旅客乘座舒适度相关的的指标。风荷载考虑为脉动的,按Simiu谱用Monte Carlo法模拟脉动风速,结合由风洞试验测定的空气动力参数,计算了作用于列车和桥梁上的自然风荷载。根据结构动力学理论,建立了机车(车辆)的动力学方程,建立了桥梁的有限元振动方程;桥上轨道不平顺按6级线路(最好的线路)模拟。计算结果表明,对芜湖长江大桥,桥上允许行车的桥面处横桥向最大风速应小于30m/s。  相似文献   

12.
为了保证高速列车在大风环境下路堑中行驶的安全,建立了高速列车—路堑耦合的气动仿真模型,研究了不同风场环境下路堑深度对列车气动性能的影响.研究表明:高速列车的气动特性随着风载荷的突变,气动特性的变化情况复杂.横风环境下,路堑深度的增加有利于降低列车气动力,而在突变风环境下,突变风作用下列车的气动力随风速变化情况更为复杂....  相似文献   

13.
侧风环境下列车高速通过站台的流固耦合振动   总被引:1,自引:0,他引:1  
为了考察侧风环境下列车能否临靠站台高速安全通过,采用列车空气动力学和列车系统动力学相结合的方法,通过侧风与列车的流固振动分析获得列车姿态的变化;考虑侧风作用下,列车的姿态变化和轨道几何不平顺的影响,分析了侧风环境下,列车临靠站台高速通过时的气动响应.计算结果表明,与无风环境尾车易与站台碰撞不同,在6 m/s侧风环境下,当列车以350 km/h的速度临靠站台通过时,车头前端是离站台最近的位置.  相似文献   

14.
为探讨风屏障的防风效果,对侧风作用下平层公铁桥梁-列车-风屏障系统气动特性进行了风洞试验研究,针对两类风屏障的不同透风率和高度对不同风偏角下桥上中间列车的三分力系数进行测试,研究了风屏障在不同风偏角下的倾覆力矩系数的折减系数.研究结果表明:风屏障在桥面上安装位置不同,对列车气动力特性影响有明显区别;设置风屏障能够有效减...  相似文献   

15.
根据机车实际运用工况和设计经验从机车限界、轮齿强度、齿面抗磨损、传动平稳性、抗胶合能力等角度,研究了机车牵引齿轮齿数、模数、压力角、变位系数等参数的边界条件和设计方法.为了快速、准确地制定机车牵引齿轮的设计方案,根据机械优化设计方法建立目标函数与约束条件,利用Visual Basic编制了机车牵引齿轮方案设计系统,通过...  相似文献   

16.
为了保证高速列车在隧道入口有侧风环境中的安全,采取数值分析的方法,建立高速列车进入隧道口存在侧风时的三维可压缩、粘性、非稳态湍流数学模型,研究了当隧道洞口有无侧风和隧道洞口侧风速度变化时隧道内的压力变化以及隧道内活塞风的变化规律.研究结果表明:隧道入口存在侧风时,隧道内测点先出现负压力峰值,后逐渐上升到正压力峰值;随着压缩波的向前传播,波形逐渐分化成两个波峰,并且压缩波越往前传播,第一个波峰逐渐消失,第二个波峰得到加强,其波峰的正压峰值超过无侧风时的最大正压峰值;隧道内速度场出现明显的非对称性,隧道内靠近迎风一侧的环状空间的列车风比背风一侧环状空间的小,背风一侧隧道入口处出现比较明显的涡流,侧风速度越大,最大负压值绝对值越大,隧道内测点的最大正压值、最大负压值均与侧风的速度成正比;当列车速度为350 km/h,侧风速度到达40 m/s时,隧道内活塞风的速度可达21.8 m/s,隧道内的压缩波的最大负压值可达-6 547 Pa.  相似文献   

17.
重载组合列车机车车钩稳定控制试验   总被引:3,自引:1,他引:2  
为控制重载组合机车车钩的动态稳定性,根据重载机车车钩稳定性的工作原理与车体和乍钩的儿何关系,推导了机车车钩最大自由摆角的计算方法.以某型机车装用DFC-E100型钩缓装置在大秦线牵引重载列车为例,通过改变列车的牵引重量、编组方式和制动方式,不断加大作用于机车的纵向力,实测被试机车的脱轨系数、轮重减载率和轮轴横向力等安全性参数,试验研究列车中部机车车钩横向摆动对机车运行安全性的影响.结果表明:在压钩力作用下,机车车钩摆角随车钩纵向力的增大而增大;车钩最大自由摆角增大,机车的安全性参数及机车脱轨的风险则随之增加,考虑工程误差,车钩最大自由摆角应为2.5°~3.5°.  相似文献   

18.
地铁列车在进站或驶离车站过程中产生的活塞效应及其活塞风与地铁通风和能耗关系密切。随着地铁的广泛应用,如何在保证满足站厅和站台层舒适度要求的前提下,尽可能的降低能耗,减少运行费用,是建设和管理部门必须考虑的问题。所以有关活塞风的合理利用对于实现地铁运营节能具有重要的理论价值和实际意义。从活塞风的成因出发,系统的研究了影响活塞风成风大小的因素,对影响活塞风成风的主要因素进行了SES单因素模拟试验,并指出活塞风成风因素的优化选择。这既是合理利用活塞风以实现进一步节能的有效途径,也为地铁设计和运营提供理论上的支持和技术上的参考。  相似文献   

19.
线路区段牵引定数不统一是影响列车编组计划制定的重要因素,导致了列车在部分区段欠轴运行,在换重站或技术站进行补减轴作业.本文重点论述了减重方向列车编组方案的优化问题,提出了按充分条件将各种方案归类的方法,从而减少方案成本的对比次数,能快速获得最优的运送方案.在方案成本构成的分析过程中,充分考虑了各影响因素,将牵引机车费用看作与里程相关的可变成本,将欠轴列车浪费的机车和线路能力转化为惩罚费用,并考虑列车开行频率对方案费用的影响,最后从全网络的角度建立减重方向减轴列车编组优化模型.该模型既可获得合理的减重站,又能依据车流量关系选择优化的减轴编组方式,实例验证了模型的有效性.  相似文献   

20.
为了探明车钩箱中心线相对车底架中心线存在横向偏差及对制动时机车动态性能的影响规律,测量了八轴机车底架几何参数.测试结果发现,车钩箱偏离车底架中心线范围约5~10 mm.根据测量结果,考虑国内重载机车常用的车钩缓冲器装置的结构特点,建立了具有时变弧面接触特性的钩缓动力学模型和由2台八轴机车组成的列车动力学模型.在此基础上分析了不同横向偏差的车钩摆角、车体横向错位以及机车行车安全性.研究结果表明:在厂线试验条件下,若车钩箱偏离中心线距离越大,制动后车钩摆角与车体横向错位增大,行车安全性越差.为保证行车安全性,车钩箱偏离距离应不超过9 mm.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号