首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
将车辆间时空交互信息融入卷积社会池化网络中,提出了一种面向群体行驶场景的有人驾驶车辆轨迹预测模型;使用长短时记忆(LSTM)网络预测群体车辆速度,基于此预测值计算群体车辆间的速度差;构造LSTM编码器捕捉群体车辆行驶轨迹的时间序列特征,设计卷积社会池化网络提取群体车辆间的空间依赖关系,使用LSTM解码器预测未来车辆各种动作的出现概率和相应轨迹,将具有最高出现概率的动作及其轨迹作为最终轨迹预测结果;使用真实轨迹数据集对所构建模型进行了参数标定和性能验证,测试了不同轨迹编解码与速度预测方法对模型性能的影响,确定了最优模型结构。计算结果表明:相较于历史速度,使用预测速度计算速度差作为模型输入可将均方根误差(RMSE)降低19.45%;相较于门控循环神经网络,使用LSTM进行速度预测可将RMSE降低4.91%;相较于原始卷积社会池化网络,所提出模型的轨迹预测误差在RMSE与负似然对数2个指标上分别降低了20.32%和21.04%,明显优于其他卷积社会池化网络变体;所提出模型与原始卷积社会池化网络计算耗时差距约3 ms,能够满足实时应用要求。   相似文献   

2.
车辆移动轨迹的不确定性及异常点段的存在使其在数字交通领域的应用面临挑战。本文构建基于数据增强的LSTM-AE-Attention深度学习模型,进行车辆轨迹重建和异常轨迹识别。首 先,使用对抗生成网络和贝塞尔样条曲线从样本量和种类两方面扩充数据集,实现数据增强;其 次,通过自编码网络与长短时记忆神经网络提取轨迹特征并完成轨迹重建;最后,结合自编码网络预训练和注意力机制构建异常识别模型。采用实际车辆轨迹数据测试,模型的评价指标明显优于支持向量机、随机森林和长短时记忆神经网络模型,重建实验中模型的决定系数为0.968,异常识别实验中模型的F1值较对比模型平均提升9.8%。结果表明,本文提出的模型可有效、可靠地运用于平滑车辆轨迹数据和纠正异常车辆轨迹。  相似文献   

3.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

4.
相邻前车的驾驶行为会影响后车,因此先进的辅助驾驶系统需具备识别前车驾驶行为的能力. 对高速场景下相邻前车换道行为进行研究,分别提出双层连续隐马尔可夫模型-贝叶斯生成分类器(CHMM-BGC),以及基于双向长短时记忆网络(Bi-LSTM)的行为识别模型和意图预测模型. 采用自然驾驶数据集对模型的有效性进行测试验证. 实验分析表明:基于Bi-LSTM的行为识别模型相较于双层CHMM-BGC在平均识别率上提升了11.24%,两种行为识别模型均可在相邻前车换道过程的早期阶段识别换道行为;考虑相邻前车与周围环境车辆的交互作用,可使模型具有预测性,两种意图预测模型均可在车辆换道时刻前预测到驾驶人换道意图. 模型仿真计算时间可满足系统的实时性需求,为本车驾驶人预留出反应时间,为预测周围车辆行驶轨迹研究提供支持.  相似文献   

5.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

6.
面向车辆换道风险预测时特征差异大、样本不均衡、参数调优时间久的问题,将高精度微观车辆轨迹数据与超参数优化机器学习方法相结合,提出了一种可应用于智能网联车辆(ICV)的交织区换道风险识别与预警方法;基于无人机航拍视频,从广域视角提取了城市快速路交织区时间精度为0.1 s、空间精度为每像素0.1 m的换道轨迹,测算了车辆间距、矢量速度、加速度、接近率、速度角度等换道风险感知信息;引入考虑近邻车辆信息的换道TTC模型,以反映车辆汇入或汇出主线的迫切需求,描述其在不同位置的换道行为差异性;结合15分位数法和四分位差法,划分了换道风险预警等级;基于准确率、真阳性率、灵敏度等多项评价指标,遴选并对比了线性分类器、支持向量机、K近邻以及RUSBoost模型换道风险预测结果,得出交织区换道风险实时预警优选模型,针对优选模型进行了超参数优化与验证。研究结果表明:RUSBoost模型为优选模型;超参数优化机器学习方法迭代至第24次时,RUSBoost具有最小误差与最佳点超参数;RUSBoost、BRUSBoost优化模型预测准确率分别为91.40%、99.80%,AUC分别为0.96、0.99;BRUSB...  相似文献   

7.
为实现准确识别车辆换道意图,提高车辆行驶安全性,综合考虑车辆换道过程的时空特性及不同特征对车辆的影响程度,提出一种基于卷积神经网络(CNN)与门控循环神经网络(GRU)组合并融合注意力机制的换道意图识别模型。首先,筛选和平滑处理车辆轨迹数据,将车辆轨迹数据分为向左换道、向右换道及直线行驶3类,构建换道意图样本集。其次,构建融合注意力机制的 CNN_GRU模型,识别换道意图样本集,考虑到行驶过程中车辆之间的交互性,将被预测车辆和周围车辆的位置和速度信息作为模型的输入,经过CNN层特征提取的特征作为GRU层的输入,经过注意力机制层对不同的特征增加不同的权重系数,利用 Softmax 层识别换道意图。最后,选用 NGSIM 中 US-101 数据集的轨迹数据验证融合注意力机制的 CNN_GRU模型性能, 同时,与LSTM、GRU、CNN_GRU及CNN_LSTM_Att等模型进行对比分析。验证结果表明,所提模型车辆换道意图识别整体准确率达到97.37%,迭代时间为6.66 s,相比于其他模型准确率最多提高9.89%,最少提高2.1%。分析不同预判时间下的意图识别,模型可在车辆换道前2 s 内均能识别换道意图,准确率在89%以上,表现出良好的识别性能。  相似文献   

8.
精准的车辆轨迹预测模型可以为自动驾驶车辆提供其周围车辆的准确运动状态信息,进而判断本车与周围车辆短期内是否有发生冲突的可能性。本文提出一种基于时域卷积网络与注意力机制(Temporal Convolutional Networks with Attention mechanism,TCN-Attention)的车辆换道轨迹预测模型。该模型以时域卷积网络作为当前输入的特征提取器,利用时间与空间注意力机制使模型在不同时间和空间位置之间建立动态关联,更准确地捕捉车辆之间的动态时空相关性,实现准确预测车辆换道轨迹。与传统单一车辆轨迹特征输入不同,本文通过对输入特征进行多维扩充与融合,进一步提高了轨迹预测准确率。此外,本文提出一种换道执行起止时刻定义方法更准确地确定数据集中的换道起止时刻。实验表明,本文所提模型能以高准确率预测变换车道轨迹,在整体效果上优于其他深度学习模型,与ConvLSTM (Convolution Long Short-Term Memory)相比,TCN-Attention的平均绝对误差(Mean Absolute Error,EMAE)降低了69.8...  相似文献   

9.
道路交通事故模拟再现的车辆动力学三维模型   总被引:12,自引:1,他引:12  
应用动力学理论,提出了用于道路交通事故模拟再现分析的车辆动力学三维模型,并引用日本汽车研究所的16例车对车实车碰撞实验数据对该三维模拟模型的计算误差进行界定,并与二维四轮模拟模型的计算精度进行了定量比较,针对实际道路交通事故案例进行了模拟再现。实例证明车辆三维模型在计算车辆碰撞动力学问题时的总体平均相对误差值为6.65%,虽然相对于车辆二维四轮模型其速度计算精度在总体水平上降低了1.43%,但若考虑到其对道路交通事故形态的包容性和形象化方面的优势,计算精度的适度降低是可以接受的。  相似文献   

10.
针对智能车纵向决策问题,提出基于环境车辆偏离车道程度识别运动模式的方法;构建动态环境车辆横纵向轨迹预测模型,并求解;构建保持、先行、避让在内的决策集,提出基于预测轨迹的单个车辆决策方法,并基于所有动态环境车辆的决策结果在加速、减速和匀速3 种结果中做出综合决策. 实车实验表明:在直行、换道和转弯运动模式下轨迹预测平均误差分别为0.11,0.29,0.80 m,预测精度较高;复杂动态环境下,本文提供的纵向决策信息提升了智能车行驶的安全性和舒适性.  相似文献   

11.
针对传统模型预测算法在智能车辆轨迹跟踪的局限性,引入随道路曲率变化的速度自适应调节算法,设计轨迹跟踪控制器。设计目标函数及添加约束条件,通过Matlab/Simulink软件,在不同车速下与传统算法进行比较,仿真结果表明:不同的纵向车速对传统算法的轨迹跟踪有一定的影响,而对改进后的算法影响较小。尤其当车速较高时,改进后的算法轨迹误差更小,能保证车辆安全、稳定地行驶。  相似文献   

12.
为确保通信延时条件下协同式自适应巡航控制(CACC)系统的弦稳定性,利用模型预测控制(MPC)和长短期记忆(LSTM)预测方法,研究CACC系统中车辆协同控制下的通信延时补偿方法;基于车辆队列四元素架构理论,构建了包括车辆动力学模型、间距策略、网络拓扑和MPC纵向控制器的系统模型,并综合考虑2范数和无穷范数弦稳定性条件,提出了CACC车辆队列混合范数弦稳定性量化指标,最终形成协同式车辆队列建模与评价体系;设计了一种利用前车加速度轨迹(PVAT)作为开环优化参考轨迹的MPC方法,即MPC-PVAT,通过综合考虑队列的跟驰、安全、通行效率和燃油消耗等性能指标,使目标函数趋于最小代价,从而得到当前时刻的最优控制量,并利用庞特里亚金最大值原理对所设计的优化问题进行快速求解;在MPC-PVAT基础上,提出一种基于长短期记忆(LSTM)网络的通信延时补偿方法,即MPC-LSTM,将跟驰车辆的传感器信息输入LSTM网络来预测其前车的运动状态,从而缓解短暂通信延时对车辆队列稳定性的影响。仿真测试结果表明:MPC-LSTM可容忍的通信延时上界大于1.5 s,比MPC-PVAT提升了0.8 s,比线性控制器提升了1.1 s;在基于实车数据测试中,当通信延时增加到1.2 s时,MPC-LSTM的弦稳定性指标相比MPC-PVAT提升了20.33%,与线性控制器相比稳定性提升了39.35%。可见,在通信延时较大的情况下,MPC-LSTM对通信延时具有很好的容忍性,从而有效地保证了CACC车辆队列的弦稳定性。   相似文献   

13.
为预测山区双车道公路货车与冲突车辆发生的碰撞,本文基于无人机视频,提取货车与交互车辆的高精度轨迹数据,选取适用于不同运行轨迹的交通冲突指标,结合极值理论,构建双变量冲突极值(BTCEV)模型,将后侵入时间(PET)与碰撞时间(TTC)纳入统一框架,实现山区双车道公路货车与冲突车辆的碰撞预测,并以云南省货车事故高发的山区双车道公路为例,验证 BTCEV模型的预测性能。研究表明:PET为0.382 s、TTC为4.471 s是山区双车道公路货车严重冲突的阈值;BTCEV 模型预测山区双车道公路货车年事故发生率为 5.84%,预测准确性高达 98.92%,较PET模型以及TTC模型分别提高了167.33%和10.80%;且相比于单变量模型,双变量模型所估计的置信区间更窄,预测精度更高。研究结果将山区双车道公路货车碰撞预测方法从单变量扩展到双变量,在山区货车交通安全分析方面有广阔的应用前景。  相似文献   

14.
为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车...  相似文献   

15.
车辆轨迹蕴含着大量丰富的交通流时空信息,对于全面解构城市交通路网运行具有至关重要的意义.传统车辆轨迹重构模型大多基于定点线圈检测数据或者浮动车轨迹数据作为输入数据,并且普遍未考虑过饱和交通状态.本文提出了一种基于车辆身份感知数据的车辆路段轨迹重构方法,通过构建一种绿灯相位回溯框架,基于交通流激波理论分段重构车辆行程轨迹,每次回溯过程包含两个主要步骤,即估计车辆状态和分状态重构车辆行程轨迹;然后在Paramics 微观交通仿真平台上对本方法模型的准确性进行了验证.结果表明,该方法在各种饱和状态下均能达到令人满意的应用效果.  相似文献   

16.
车辆轨迹蕴含着大量丰富的交通流时空信息,对于全面解构城市交通路网运行具有至关重要的意义.传统车辆轨迹重构模型大多基于定点线圈检测数据或者浮动车轨迹数据作为输入数据,并且普遍未考虑过饱和交通状态.本文提出了一种基于车辆身份感知数据的车辆路段轨迹重构方法,通过构建一种绿灯相位回溯框架,基于交通流激波理论分段重构车辆行程轨迹,每次回溯过程包含两个主要步骤,即估计车辆状态和分状态重构车辆行程轨迹;然后在Paramics 微观交通仿真平台上对本方法模型的准确性进行了验证.结果表明,该方法在各种饱和状态下均能达到令人满意的应用效果.  相似文献   

17.
汽车出车率预测对于交通管理者预先制定精准化管控方案、实施协调化统筹调度,以及调控汽车保有量规模具有重要意义。为此,本文提出一种基于猎人猎物优化算法与双向长短时记忆神经网络组合模型(HPO-BiLSTM)的汽车出车率预测方法。首先,分析汽车出车率的关键影响因素,提取出17个特征影响因子,结合标准化处理后的重构时间序列,基于随机森林算法进行变量的重要度评估,筛选出最优特征集合作为预测模型输入;其次,为解决神经网络算法容易陷入局部极值的难题,建立一种融合猎人猎物优化算法(HPO)与双向长短时记忆神经网络(BiLSTM)的组合预测模型,利用HPO的探索-开发机制,实现BiLSTM框架的动态化搭建与精细化调参;最后,结合北京市中心城区的汽车出车率数据集进行模型性能的测试与检验。结果表明:与自回归差分移动平均模型、灰色模型、卷积神经网络模型、长短时记忆神经网络模型以及双向长短时记忆神经网络模型等经典算法相比,HPO-BiLSTM模型在汽车出车率预测中的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了23.85%~54.38%、20.67%~57.40%、27...  相似文献   

18.
城市停车已逐步实现信息化和动态化管理,本文对动态管理模式下大范围路侧泊位占有率预测方法进行研究.在收集美国旧金山492万条停车交易数据的基础上,利用可同时提取数据空间关联和时序趋势特征的卷积长短时记忆神经网络(Convolutional LSTM Network,ConvLSTM),分别构建考虑停车费率和时限动态变化的有政策模型,和没有动态管理信息输入的无政策模型.结果显示,有政策模型的训练效率和预测精度会显著提升.在政策平稳阶段,两种模型均能够有效预测泊位占有率;在政策发生变化时段,无政策模型的预测误差出现激增,但有政策模型的预测误差依然保持平稳,表明本文提出的方法能够很好地应对动态管理模式下停车需求的变化.  相似文献   

19.
浮动车数据在车辆路径问题中的应用   总被引:1,自引:0,他引:1  
李昊  罗霞  姚琛 《西南交通大学学报》2007,42(6):748-752,757
利用浮动车信息采集系统预测路段行程时间,实现对带时间窗的混合车辆配送路径选择的优化.提出了带时间窗的混合车辆路径选择优化问题的求解模型;设计了浮动车地图匹配和路段行程时间预测算法,以实现对路段行程时间的预测,并通过给出的成都市浮动车数据证明了所提出的算法比同类算法更有效——地图匹配率提高6%,路段行程时间预测值与实测值的拟合度更高,运输总费用节约24%.  相似文献   

20.
为了提高信号灯前车辆的通行效率,改善交通流整体运行水平,本文从减少车辆延误和降低燃油消耗两个角度入手,在智能网联环境下,提出了一种车辆编组识别算法和针对编组头车的多目标线性轨迹优化模型(MOLP-pl)。首先对智能驾驶员跟驰模型(IDM)进行改进,调整车辆状态,减少车辆随机到达状态下车辆速度和车头时距分布的差异,同时为后续MOLP-pl轨迹优化模型的运行提供先决条件。在此基础上,以车辆编组为优化单元,通过车辆编组识别算法识别编组头车和跟随车辆,将编组头车的行驶轨迹作为优化对象并建立相应的数学模型。为了提高车辆轨迹优化模型的求解效率和精度,对其进行线性化重构,采用线性求解器计算编组头车加速度,构建编组头车最佳时空轨迹,然后,利用IDM跟驰模型计算跟随车辆的行驶速度,从而使编组车辆最大效率的通过交叉口。最后,利用SUMO构建的仿真实验表明:本研究提出的车辆轨迹优化算法可显著提高信号灯前车辆的通行效率,在三种不同的交通饱和度条件下,相对于无速度引导场景,车辆延误分别降低了8.56%、12.42%、64.79%,燃油消耗分别降低了17.21%、18.34%、12.64%;相对于逻辑控制场景,延...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号