首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
针对无人驾驶车辆的轨迹跟踪和避障问题,基于模型预测控制算法设计了避障轨迹跟踪控制器,实现避障和轨迹跟踪功能。在不同车速下采用Matlab和CarSim进行联合仿真试验,结果表明:设计的控制器控制性能和稳定性良好,能满足无人驾驶车辆的避障和轨迹跟踪需求。  相似文献   

2.
针对智能汽车轨迹跟踪问题,基于模型预测控制原理分别采用运动学模型和动力学模型为预测模型,通过对非线性系统进行线性化和离散化处理,根据约束条件、目标函数设计了2种轨迹跟踪控制器。基于Carsim与Matlab/Simulink联合仿真平台,在不同附着系数、不同车速下进行典型轨迹跟踪仿真试验。结果表明:不同工况下,2种模型预测控制器都有良好动态跟踪特性,动力学模型的跟随效果和控制平滑度略优于运动学模型。  相似文献   

3.
为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车...  相似文献   

4.
针对GPS测量实际道路车速中存在的突变野值问题,提出改进的自适应"当前"统计模型.该模型在"当前"统计模型基础之上,根据新息向量实时对机动频率做两次调整.两次调整算法使得模型更加适应于跟踪快速机动目标,提高跟踪精度.最后将模型应用于处理GPS测量的实际道路行驶车速,同时与通过CAN总线采集的车速传感器信号进行对比.实验结果表明该方法能够改善测量结果,使修正后的数据更加切合实际.  相似文献   

5.
采用Hough变换检测车道线,然后采用背景减差法对运动目标进行检测;目标车辆的跟踪使用改进的形心跟踪算法和模板匹配算法,对运动车辆的轨迹进行提取,计算已有车辆轨迹与车道线的距离;结合高速公路三种常见变道情况,对车辆变道进行定义;通过车辆轨迹与车道线距离方差判断车辆轨迹是否发生违法变道。实验结果表明,该算法能有效地识别车辆变道轨迹,且算法简单可靠。  相似文献   

6.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

7.
信号交叉口的车速控制不当会降低车辆的燃油经济性甚至引起追尾碰撞事故,车路协同环境下的车速引导系统可以有效提高信号交叉口处的通行效率和燃油经济性。现有车速引导研究大多忽略了驾驶员风格的差异性,将导致驾驶员无法准确跟踪引导速度。针对该问题,建立考虑驾驶风格的闭环反馈车速引导模型。首先,分析不同风格驾驶员车辆最大纵向加速度的概率分布;其次,研究闭环反馈车速引导方法,使驾驶员更准确地跟踪引导车速;然后,基于机会约束规划方法优化闭环反馈车速引导模型,使模型更加符合驾驶员的不同风格;最后,在MATLAB/ Simulink环境中设计仿真场景,对激进型、适中型和保守型3种闭环反馈车速引导模型进行仿真分析。仿真结果表明:相较于传统车速引导模型,本文模型可使不同风格的驾驶员更容易跟踪引导车速,其中,激进型和适中型车速引导模型可以使车辆以更短的时间通过交叉路口,保守型车速引导模型可以提高车辆在绿灯相位通过交叉口的概率。本文方法可以有效地提高信号交叉口的通行效率。  相似文献   

8.
为准确掌握终端区航空器飞行模式,有效评估、优化飞行程序,首先,针对飞行轨迹点的时空特性,提出基于时间比的自上向下算法压缩轨迹;其次,结合轨迹点的速度和航向特征,建立基于多维属性特征的轨迹相似性模型;最后,应用禁忌粒子群(TSPSO)算法改进和优化模糊C-均值聚类(FCM)算法,并结合终端区的真实飞行轨迹数据对改进聚类算法进行验证.结果表明:轨迹压缩技术极大地降低了计算开销;与传统的FCM算法相比,改进后的聚类算法可以得到更优的满意解,提高飞行轨迹聚类效果.  相似文献   

9.
路霞 《北方交通》2010,(5):15-17
通过分析车辆行驶特性,指出了设计车速作为路线设计基础参数存在的缺陷,从而提出了运行车速理论,并且结合川九路的成功案例,论述了运行车速在道路线形设计中应用的合理性,并对传统道路线形设计方法提出了改进。  相似文献   

10.
为实现智能车辆的自适应巡航功能,基于车速跟踪及PID控制理论设计了具有上下两层结构的自适应巡航控制系统.下层控制器根据上层控制器计算出的期望车速对节气门开度和制动力矩进行协调控制.在保证控制精度的前提下简化了算法.多种工况下的仿真实验表明控制器的控制效果良好.  相似文献   

11.
针对智能车横纵向控制中路径跟踪精度、行驶稳定性以及乘坐舒适性等问题,提出了基于模型预测控制(MPC)的横纵向综合控制方法。速度规则系统根据参考路径曲率与车辆跟踪位移误差计算出期望速度曲线,速度跟踪控制采用分层式控制器,上层控制器利用MPC算法计算期望加速度,下层控制器利用车辆逆纵向动力学模型对车辆的驱动和制动进行协调控制。横向控制器根据参考路径、车辆反馈状态以及纵向上层控制器的期望速度计算车辆前轮转角。最后通过实验对比本算法与恒速MPC横向控制算法的轨迹误差,结果表明:本算法控制的车辆横向位移均方根误差减小了0.051 m,有效提高了车辆轨迹跟踪的控制精度。  相似文献   

12.
在智能网联环境下,车辆可通过相互穿插和协作通过交叉口,无需信号灯控制。为保证车辆安全高效运行,建立车辆到达时序和速度协同优化的交叉口车流轨迹优化模型。提出车辆到达时序优化模型和车辆速度优化模型,建立车辆到达时刻与速度的函数关系;在此基础上,模型以所有车辆在控制区域的行程时间与油耗加权最小为目标,车辆路径、到达时刻和速度等关键参数为决策变量,设计迭代式算法求解,实现同时优化车辆到达时刻和速度且交叉口运行效益最大的目的。实验结果表明,与车辆时序和轨迹分别优化的两阶段模型相比,本文模型降低车均延误 32.1%,减少车均油耗9.9%,说明该模型具有良好的主动性和适应性,在降低车辆延误的同时也节省了油耗。  相似文献   

13.
提出了一种纵横向协调控制的路径跟踪控制方法; 建立了车辆预瞄误差模型和考虑路面地形的高速车辆等效动力学模型, 以此引入道路曲率地形因素; 基于模糊规则设计了预瞄距离发生器, 解决预瞄误差模型中固定预瞄距离的问题; 建立了预测时域与道路曲率的函数关系, 运用模型预测控制算法求解前轮转角, 从而建立路径跟踪控制器; 运用指数模型表示车辆期望车速, 设计了比例积分微分纵向控制器控制车速以改善路径跟踪精度; 运用质心侧偏角相平面图表征车辆稳定性特征, 设计比例积分微分稳定性控制器以改善车辆稳定性。研究结果表明: 提出的控制方法能在不同附着系数路面上对车辆跟踪性能进行优化, 在干燥沥青路面以车速90 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少33%;在潮湿沥青路面以车速70 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少30%;在冰雪路面以车速55 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少16%。可见, 所提出的控制方法能有效改善路径跟踪精度。   相似文献   

14.
为提升复杂交通环境中智能车辆的避撞能力,将路径规划、速度规划及跟踪控制整合为一个优化问题,提出一种基于模型预测控制(MPC)的一体式车辆避撞轨迹规划和跟踪控制方法。首先,分析实际交通环境中的避撞场景,将智能车辆的避撞控制问题转化为多约束优化问题;其次, 搭建7DOF(七自由度)车辆动力学模型和复合滑移工况的UniTire轮胎模型设计MPC控制器;再次,针对变速控制问题中传统基于时域预测模型的MPC控制方法无法在预测时域中实现车辆空间和位姿约束的问题,设计了基于空间域预测模型的MPC控制器;最后,基于Matlab和CarSim联合仿真平台设计了不同避撞场景验证所提方法,并与现有基于恒速假设的一体式避撞控制方法进行对比。仿真结果表明:所提方法能够充分发挥车辆的机动性能,解决现有一体式控制方法在 复杂环境中避撞失败的问题,并保证避撞过程稳定和轨迹平滑。  相似文献   

15.
对汽车列车的运动特点进行了研究,建立了考虑铰接角的单拖挂汽车列车驾驶员模型;对挂车制动时车辆运动状态的变化进行了分析,设计了基于差动控制的道路跟踪控制器,建立了基于Simulink和Trucksim的联合仿真模型,验证了双移线工况下模型的路径跟随性和行驶稳定性。结果表明:基于差动制动的单拖挂汽车列车道路跟踪控制器,与单点最优预瞄驾驶员模型控制器和考虑铰接角的驾驶员模型控制器相比,转向过程更加平稳,提高了路径跟踪能力,降低了侧向加速度峰值,提高了行驶稳定性。  相似文献   

16.
为提升驾驶员特征聚类方法的适用性与可靠性,本文基于机动车运行轨迹分析提出考虑交通运行条件影响的驾驶员特征聚类改进方法。首先,经过对车辆运行轨迹数据的分析发现,不同道路类型和平均速度条件会显著影响驾驶行为的集计特征;其次,提出改进的驾驶员特征聚类方法,第1步设计考虑道路类型与平均速度因素的车辆轨迹的切片和分类方法,从而稳定提取典型交通条件下的驾驶行为特征参数,第2步选用高斯混合模型聚类驾驶员特征。聚类案例表明, 在相同的道路类型和平均速度条件下,驾驶员类型越激进,其速度变异系数、加速度标准差和平均减速度等参数均值越高。不同聚类方法的对比表明,改进方法在驾驶员聚类的类内聚集度和类间分离度方面均表现更好,能有效提升驾驶员聚类的适用性与可靠性。  相似文献   

17.
建立了双向双车道环境下单车超越车队模型, 分析了影响双向双车道超车危险区域范围的主要因素; 设计了分步式单车超越车队算法, 研究了安全间隙前后车速度、超车车辆入队速度与车队安全间隙范围四者之间的关系, 提出了车辆入队所需最小安全间隙的速度匹配方案; 建立了单车超越车队算法的目标函数, 设定最大允许超车时间内超车车辆与车队行驶距离最大, 超车车辆超越车队车辆数最多, 前、后车形成安全间隙过程中加速度、减速度最小; 提出了基于改进粒子群的分级约束多目标优化方法, 为单车超越车队算法中的三级车速引导提供了优化的速度引导方案。研究结果表明: 双向双车道环境下超车危险区域范围与车队车辆数及对向车辆行驶速度成正相关关系; 改进的粒子群优化算法相比传统算法具有更强的鲁棒性和更快的收敛速度, 平均收敛时间缩短39.2%;在分步式单车超越车队过程中, 车队车辆平均速度提升9.04%, 即在车队间隙生成过程中, 虽然部分车辆速度减小, 但车队整体平均速度得到提升; 超车车辆平均速度提升16.8%, 即在超车过程中, 不仅超车车辆的安全性得到保证, 其运行效率也得到提升。   相似文献   

18.
针对传统蚁群算法在无人驾驶车辆路径规划中收敛速度慢、易陷入局部最优等问题,提出一种全局路径规划的双向蚁群算法。通过双向搜索策略改进蚁群算法,设计相遇机制求解更多可行路径,提高算法全局搜索能力;引入奖惩因子分别扩大和减小双向搜索后的较优路径和较差路径对信息素浓度的影响,加快求解最优路径的速度;最后在Matlab中模拟无人驾驶车环境,随机生成不同地图面积和障碍物出现率的车辆仿真栅格地图,比对传统蚁群算法和双向蚁群算法的实验效果。结果表明:双向蚁群算法的迭代次数和求解时间明显减少,在加快收敛速度、提高全局搜索能力以及避免局部最优方面有较大改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号