首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
顾民  储纪龙  韩阳  鲁江 《船舶力学》2018,22(3):287-295
目前国际海事组织(IMO)正在制定的第二代完整稳性衡准,其中就包括骑浪/横甩薄弱性衡准。文章首先介绍了最新骑浪/横甩薄弱性衡准方法,应用自编的衡准软件进行样船计算,分析了当前衡准的适用性。其次,开展了内倾船型在随浪和尾斜浪中的骑浪/横甩试验,试验中获得了四种与骑浪/横甩相关的运动特性:周期运动、稳定骑浪、横甩和横甩导致的倾覆,而且在某波浪条件下观察到船舶连续发生三次横甩的现象。最后,将内倾船型的骑浪/横甩薄弱性衡准计算结果与试验结果进行对比,验证了衡准方法对于内倾船型的适用性。  相似文献   

2.
To provide a theoretical methodology to predict the critical condition for capsizing due to broaching, a nonlinear dynamical system approach was applied to the surge–sway–yaw–roll motion of a ship running with an autopilot in following and quartering seas. Fixed points of a mathematical model for the ship motion and unstable manifolds of the fixed point near the wave crest were systematically investigated. As a result, the existence of heteroclinic bifurcation was identified. With numerical experiments, it was confirmed that this heteroclinic bifurcation reasonably well represents the critical condition for capsizing due to broaching. Thus the nonlinear dynamical approach can be substituted for tedious numerical experiments. Received for publication on Nov. 20, 1998; accepted on March 16, 1999  相似文献   

3.
Making use of Melnikov’s method, a generalized formula for predicting the surf-riding threshold is developed as an extension to the applications of Kan and Spyrou. A new analytical formula for calculating the surf-riding threshold of a ship in following seas is also proposed in light of nonlinear dynamical system theory. By applying a continuous piecewise linear approximation to the wave-induced surge force, a heteroclinic bifurcation point is obtained analytically with an uncoupled surge equation. Results calculated using these formulae are presented, and they show good agreement with those obtained utilizing numerical bifurcation analysis. Further, it was confirmed that the surf-riding threshold obtained using the proposed formulae agrees reasonably well with that obtained experimentally for an unconventional vessel.  相似文献   

4.
By utilizing a four-degrees-of-freedom numerical model with dense grids of control parameters and the sudden-change concept, the qualitative aspects of the nonlinear motions of a fishing vessel complying with the International Maritime Organization's intact stability criteria in following and quartering seas were intensively explored. As a result, capsizing due to broaching, capsizing without broaching, broaching without capsizing, stable surf-riding, and steady periodic motion were identified. The natures of the boundaries of these motions in the control parameter plane were investigated, and the effects of the initial conditions and the nonlinearity of calm-water maneuvering forces are also discussed. Furthermore, comparisons with a model experiment showed that the numerical model used here qualitatively explains capsizing phenomena, but quantitatively overestimates the danger of capsizing. Received: June 11, 2001 / Accepted: October 9, 2001  相似文献   

5.
URANS analysis of a broaching event in irregular quartering seas   总被引:1,自引:0,他引:1  
Ship motions in a high sea state can have adverse effects on controllability, cause loss of stability, and ultimately compromise the survivability of the ship. In a broaching event, the ship losses control, naturally turning broadside to the waves, causing a dangerous situation and possibly capsizing. Classical approaches to study broaching rely on costly experimental programs and/or time-domain potential or system-based simulation codes. In this paper the ability of Reynolds averaged Navier–Stokes (RANS) to simulate a broaching event in irregular waves is demonstrated, and the extensive information available is used to analyze the broaching process. The demonstration nature of this paper is stressed, as opposed to a validated study. Unsteady RANS (URANS) provides a model based on first principles to capture phenomena such as coupling between sway, yaw, and roll, roll damping, effects of complex waves on righting arm, rudders partially out of the water, etc. The computational fluid dynamics (CFD) method uses a single-phase level-set approach to model the free surface, and dynamic overset grids to resolve large-amplitude motions. Before evaluating irregular seas two regular wave cases are demonstrated, one causing broaching and one causing stable surf riding. A sea state 8 is imposed following an irregular Bretschneider spectrum, and an autopilot was implemented to control heading and speed with two different gains for the heading controller. It is concluded that the autopilot causes the ship to be in an adverse dynamic condition at the beginning of the broaching process, and thus is partially responsible for the occurrence of the broaching event.  相似文献   

6.
骑浪/横甩是IMO船舶第二代完整稳性的五种失效模式之一,是一种基于概率的稳性衡准,制定规范的目的是更有效地保障船舶在实海域中的航行安全,确保不发生稳性失效情况.本研究中,以IMO有关成员国提出的最新版骑浪/横甩薄弱性衡准草案为基础,基于自主开发的骑浪/横甩薄弱性衡准校核软件,针对围网渔船开展了样船计算和比较分析,研究IMO正在制定的骑浪/横甩薄弱性衡准方法对该类船型的适用情况,分析船型参数对骑浪/横甩薄弱性衡准的影响,为我国参与国际法规制定,提出针对骑浪/横甩薄弱性衡准的提案提供技术支撑和依据.  相似文献   

7.
介绍了骑浪/横甩的物理背景,以及骑浪/横甩第一层和第二层薄弱性衡准发展过程,并分析了骑浪横甩薄弱性衡准计算方法及初步衡准,掌握骑浪横甩薄弱性衡准技术的发展现状,有助于骑浪/横甩相关技术领域的研究,为船舶第二代完整稳性的技术发展奠定基础。  相似文献   

8.
国际海事组织(IMO)船舶建造和设计委员会(SDC)4次会议把第二代完整稳性衡准直接评估方法提上议程,本文针对第二代完整稳性衡准的五种稳性失效模式——参数横摇、纯稳性丧失、骑浪/横甩、瘫船稳性和过度加速度,分别给出了直接评估的水动力原则性要求,然后针对这些水动力要求进行了分析,并给出了具体的数学模型.最后结合已有的计算结果对直接评估方法的可行性进行了分析,为二代稳性直接评估软件的开发和应用奠定了基础.  相似文献   

9.
Parametrical studies based on numerical simulations were carried out for very steep regular waves to assess possible improvements in the state-of-the art numerical modelling of the control and capsizing behaviour of ships in following and quartering seas. A nonlinear 6-DOF numerical model has been developed with the inclusion of frequency-dependent terms, the so called memory effects, and a flexible axis system that allows straightforward combination of seakeeping and manoeuvring models while accounting for extreme motions. The previously undertaken validation analyses using extensive model test data provided qualitatively good agreement, whereas the comparison with numerical models without coupling of the vertical motions and frequency-dependent hydrodynamic terms embodied in radiation forces identified improvements in the accuracy. However, to broaden the assessment of the numerical model, further parametrical numerical analyses were carried out using two ships, which had previously been tested in the validation analyses, for various operational and environmental conditions. These parameters were changed in accordance with the recommendations from international organisations and experience from model tests to realise and avoid dangerous conditions that often result in capsizing, such as broaching associated with surf riding and low-cycle resonance. As a result of the parametric analysis, we discuss the sensitivity of the improvements in the numerical model for various critical operational and design parameters and its possible use to provide a link between the ship's behavior and these parameters.  相似文献   

10.
本文针对国际海事组织(IMO)目前正在制定的第二代完整稳性衡准中的骑浪/横甩稳性失效模式展开了研究,详细阐述了最新的衡准草案规范并编制了计算程序。在此基础上,以一条远洋渔船为例,开展了静水阻力拖航试验,研究了规范中所涉及的输入参数对于衡准校核结果的影响,包括静水阻力、螺旋桨推力系数等。结果表明,静水阻力数据对于校核结果的影响很大,而螺旋桨推力系数等的影响则较小。本研究对于IMO确立该衡准规范具有参考价值,对于船舶设计人员也有一定的指导意义。  相似文献   

11.
在船舶与波浪相互作用时的三维预报方法的基础上,发展了SPAR平台与规则波相互作用的时域数值预报方法,该方法计入了SPAR平台垂荡和纵摇阻尼效应。使用该方法对一经典SPAR平台进行了规则波中的时域数值模拟。通过计算分析可以看出,该方法能捕捉SPAR平台在临界波浪周期下的耦合运动,验证了该方法的可靠性。  相似文献   

12.
The ship motions and wave-induced loads of a new type of river-to-sea ship are investigated experimentally and numerically. A river-to-sea ship is an unconventional type of container ship characterized by high breadth to draft ratio and low length to breadth ratio, which makes it more prone to hydroelasticity than conventional ships of the same size. A segmented model was tested under two loading conditions, namely, ballast and loaded conditions, to determine the vertical motions and wave-induced loads under each condition. Results are compared with numerical simulations in the frequency domain. The wave-induced responses are calculated by a nonlinear time domain code at each time step. The response amplitude operators of vertical ship responses in regular waves are analyzed, and the wave-induced responses are consistent with the experimental results.  相似文献   

13.
14.
船舶顺浪航行的纯稳性损失研究已成为国际航海界和国际海事组织(IMO)关注的课题之一。基于计算流体力学(CFD)技术,生成了船舶的骑浪航态,采用系列横摇衰减试验方法,获取到了该航态下某型舰艇的稳性曲线,通过后续计算得到纯稳性损失,并与一般理论计算法得到的结果进行对比,结果验证了该方法的可信度。  相似文献   

15.
To avoid stability failure due to the broaching associated with surf riding, the International Maritime Organization (IMO) has begun to develop multilayered intact stability criteria. A theoretical model using deterministic ship dynamics and stochastic wave theory is a candidate for the highest layer of this scheme. To complete the project, experimental validation of the theoretical method for estimating broaching probability in irregular waves is indispensable. We therefore conducted free-running model experiments using a typical twin-propeller and twin-rudder ship in irregular waves. A simulation model of coupled surge–sway–yaw–roll motion was simultaneously refined. The broaching probability calculated by the theoretical method was within the 95 % confidence interval of that obtained from the experimental data. This could be an example of experimental validation of the theoretical method for estimating the broaching probability when a ship meets a wave.  相似文献   

16.
系泊系统的时域仿真及其非线性动力学特性分析   总被引:1,自引:1,他引:0  
杜度  张宁  马骋  张纬康 《船舶力学》2005,9(4):37-45
应用时域仿真的方法研究了系泊系统的非线性动力学特性。以三阶操纵运动方程为基础,引入定常的风力、潮流作用力和二阶波浪力,建立了系泊系统三自由度的运动微分方程。在此数学模型的基础上,建立了系泊系统的多自由度的计算机仿真模型。在风浪流联合作用的情形下,对一艘单点系泊油轮的动力学行为进行了仿真研究。以潮流速度和系缆程度为分岔控制参数,在参数平面上给出了局部分岔集。研究表明,系泊系统的动力学行为具有强烈的非线性特征。在仿真过程中观察到了吸引子的共存和Hopf分岔。局部分岔集将参数平面分为3个系统动力学行为本质不同的区域。极值系泊力水平与系泊系统的动力学行为有着密切的关系。对于单点系泊船舶而言,顶风顶浪顶流的状态并不一定是最为危险的工况。局部分岔集的确定为系泊系统参数的选择提供了决策依据。  相似文献   

17.
 We have attempted to develop a more consistent mathematical model for capsizing associated with surf-riding in following and quartering waves by taking most of the second-order terms of the waves into account. The wave effects on the hull maneuvring coefficients were estimated, together with the hydrodynamic lift due to wave fluid velocity, and the change in added mass due to relative wave elevations. The wave effects on the hydrodynamic derivatives with respect to rudder angles were estimated by using the Mathematical Modelling Group (MMG) model. Then captive ship model experiments were conducted, and these showed reasonably good agreements between the experiments and the calculations for the wave effects on the hull and the rudder maneuvring forces. It was also found that the wave effects on restoring moments are much smaller than the Froude–Krylov prediction, and the minimum restoring arm appears on a wave downslope but not on a wave crest amidship. Thus, an experimental formula of the lift force due to the heel angle of the ship is provided for numerical modelling. Numerical simulations were then carried out with these second-order terms of waves, and the results were compared with the results of free-running model experiments. An improved prediction accuracy for ship motions in following and quartering seas was demonstrated. Although the boundaries of the ship motion modes were also obtained with both the original model and the present one, the second-order terms for waves are not so crucial for predicting the capsizing boundaries themselves. Received: June 20, 2002 / Accepted: October 10, 2002 Acknowledgments. This research was supported by a Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 13555270). The authors thank Prof. N. Rakhmanin of the Krylov Ship Research Institute for providing the Russian literature, as well as Mr. H. Murata of NHK (Japan Broadcasting Corporation) for translating it into Japanese. Address correspondence to: N. Umeda (e-mail: umeda@naoe.eng.osaka-u.ac.jp)  相似文献   

18.
In the research field of nonlinear dynamical system theory, it is well known that a homoclinic/heteroclinic point leads to unpredictable motions, such as chaos. Melnikov’s method enables us to judge whether the system has a homoclinic/heteroclinic orbit. Therefore, in order to assess a vessel's safety with respect to capsizing, Melnikov’s method has been applied for investigations of the chaos that appears in beam sea rolling. This is because chaos is closely related to capsizing incidents. In a previous paper (Maki et al. in J Mar Sci Technol 15:102–106, 2010), a formula to predict the capsizing boundary by applying Melnikov’s method to analytically obtain the non-Hamiltonian heteroclinic orbit was proposed. However, in that paper, only limited numerical investigation was carried out. Therefore, further comparative research between the analytical and numerical results is conducted, with the result being that the formula is validated.  相似文献   

19.
Parametric rolling of a containership in longitudinal and quartering seas is examined by applying nonlinear dynamics to a 1DOF mathematical model with realistic modeling of the wave effect on roll-restoring moment. In our previous work, we confirmed that a mathematical model with a roll-restoring moment in waves calculated with the Froude–Krylov assumption could considerably overestimate the danger of capsizing associated with parametric rolling. Therefore, in the present work, all numerical calculations based on nonlinear analysis were carried out with the direct aid of a measured roll-restoring moment in waves. For this purpose, captive model experiments were conducted for various sets of wavelengths in longitudinal seas. This experiment demonstrates that the Froude–Krylov prediction could not explain the wavelength effect on restoring moment as the wave-steepness effect. Using the numerical model with the aid of this measured roll-restoring moment, the Poincaré mapping technique was applied to identify bifurcation structures of roll motions not only in longitudinal seas, but also in quartering seas. As a result, it was confirmed that capsizing associated with parametric rolling is more likely to occur in following seas than in quartering seas. However, period-doubling and chaos appeared in quartering seas. Finally, an averaging method assuming a period-2 orbit was applied to the same model with the same conditions as the Poincaré map. Reasonably good agreement was obtained between the numerical results with a Poincaré map and those with the averaging method in longitudinal seas, but the averaging method has limited capability in quartering seas.  相似文献   

20.
The wave-induced motions of ships in maneuvering condition are numerically studied based on potential theory. The total disturbance potential is decomposed into a basic part and a perturbation part. The basic flow is evaluated based on the double-body model with a trailing vortex sheet. The perturbation flow is solved by using a time domain Rankine panel method to determine the hydrodynamic forces, and the wave-induced ship motions are then evaluated by an Adam–Moulton scheme. The solving process of the wave-induced motion is integrated with the maneuvering prediction by using a two–time scale model. Numerical tests are firstly carried out for a Series 60 ship, and the numerical results are compared with the experimental data to validate the numerical method for the basic flow. Then the wave-induced motions of the S-175 container ship in straight course and in turning condition are simulated; the numerical results are compared with the ITTC data and the experimental data, which show fairly good agreements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号