首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
援马尔代夫中马友谊大桥主桥为(100+2×180+140+100+60)m混合梁V形支腿连续刚构桥。主梁采用混凝土梁+钢箱叠合梁的混合梁,19~22号墩间三孔梁跨中区段为钢箱-超高性能混凝土叠合梁,其余区段均为预应力混凝土梁。为改善中跨受力,在19~21号墩顶设置V形支腿,采用1道厚2.0m的横隔板实现墩顶主梁、V形支腿、中跨主梁的连接。针对强涌浪区、珊瑚礁地质条件,主桥墩基础采用变截面钢管复合桩基础,成桩后钢护筒参与桩基础结构受力。耐久性设计采用海工高性能混凝土和适当增加混凝土保护层厚度的基本防腐原则,同时针对不同结构部位增加相应的附加防腐措施。  相似文献   

2.
援马尔代夫中马友谊大桥主桥为(100+2×180+140+100+60)m混合梁V形支腿连续刚构桥,180m跨和140m跨跨中区段主梁采用钢箱-超高性能混凝土叠合梁(每段叠合梁两端各包含长4.0m的钢-混结合段),其跨中分别设置50m和22m长的钢箱梁合龙段。因施工海域长周期波涌浪强烈,该桥大节段钢箱梁采用顶推合龙方案施工。在起吊钢-混结合段钢壳时,采用自动脱空的铰支架机构,以防止其碰撞甲板;在吊装小节段钢箱梁(50m长的钢箱梁合龙段分为4个小节段)至混凝土箱梁顶时,采用横向油气弹簧+竖向橡胶支垫的落梁缓冲技术,以防止钢箱梁下落时与混凝土梁体碰撞;顶推时,通过支点反力和导梁应力双控来保证结构安全,并通过调整混凝土梁顶部压重来控制主墩平衡弯矩;钢箱梁采用横向错位工艺合龙,实现了高精度配切合龙。  相似文献   

3.
襄阳市东西轴线二跨汉江大桥主桥为(3×60+320)m的独塔混合梁斜拉桥,边跨主梁采用混凝土梁,主跨主梁采用钢箱梁,桥面采用14mm厚正交异性钢桥面板+80mm厚C40聚丙烯纤维混凝土+70mm厚SMA改性沥青混凝土的铺装方案。为分析该钢-混组合桥面铺装方案的结构受力是否合理,采用MIDAS Civil 2010软件建立全桥整体模型及横隔梁、U肋局部分析模型,对钢梁、混凝土桥面板的应力及混凝土桥面板的裂缝宽度进行计算分析。结果表明:钢梁及混凝土桥面板的各项应力均在规范容许的范围内;钢梁的Von Mises等效应力小于钢材的屈服强度;混凝土桥面板的表面最大裂缝宽度为0.097mm,小于规范控制的目标值0.15mm。  相似文献   

4.
马尔代夫中马友谊大桥是"一带一路"重点工程,主桥为六跨叠合混合梁V形墩刚构桥。为了确保大桥100年设计使用寿命,调研了马尔代夫既有建筑结构的腐蚀现状,分析了项目所处环境的腐蚀介质,对混凝土结构及钢结构所处腐蚀环境及类型进行了划分。确定了混凝土结构采用海工高性能混凝土和适当增加混凝土保护层厚度的基本防腐措施,并针对不同结构部位增加附加防腐措施;钢结构采用重防腐体系的耐久性设计原则。腐蚀重点关注的构件布置了阳极梯系统。对桥梁混凝土构件的耐久性进行监测与评估,并针对相应腐蚀情况提出防护措施,确保大桥耐久性满足全寿命期要求。  相似文献   

5.
益阳市胜天大桥为(181.95 m+450 m+181.95 m)双塔双索面斜拉桥。该桥主梁采用PK型分离双箱钢梁与UHPC桥面板相结合的结构形式,可降低主梁自重约30%,有效避免了普通混凝土桥面板普遍存在的易开裂问题。主桥采用花瓶型索塔,分别由下、中、上塔柱及下、中、上横梁六部分组成。本文采用Ansys14.0分别建立桥面板和索塔空间有限元模型,对桥面板及索塔受力复杂的局部区域进行空间有限元应力分析,揭示桥面板及索塔的受力特性及应力分布规律,以保证桥面板和索塔结构的安全性与耐久性。  相似文献   

6.
澜沧江大桥主桥设计采用钢混叠合梁斜拉桥结构形式,叠合梁单元采用缆索吊机系统进行吊装施工。受桥位场地地形条件制约,钢主梁单元拼装场和混凝土桥面板单元预制场仅能设置在桥位单侧,考虑到叠合梁单元的桥位异步吊装施工和单侧起吊施工组织要求,在缆索吊机下增设起吊吊具。以澜沧江大桥叠合梁吊装施工为依托,从起吊吊具设计分析和结构计算入手,通过实际施工应用的验证,形成一套可指导类似叠合梁异步吊装施工的吊具系统施工技术,为后续叠合梁斜拉桥施工提供借鉴。  相似文献   

7.
湖南官新高速公路马路口资水大桥主桥为主跨500 m的双塔双索面半飘浮体系斜拉桥,在该桥主梁设计时,提出了钢-UHPC组合梁(方案1)和钢-混组合梁(方案2)2种方案。为选择合理的主梁方案,对2种主梁对应的大桥结构方案进行设计,采用MIDAS Civil和ANSYS软件分别建立全桥和UHPC局部受力模型,分析2种方案的结构静力、动力性能,最后对2种方案的经济性进行比较分析。结果表明:2种方案的结构受力均能满足规范要求;与方案2相比,方案1的自重较小,可以明显降低其他结构部件工程量,其桥面板的抗裂性能好,建造成本可降低约3.3%。因此,该桥主梁推荐采用钢-UHPC组合梁方案进行设计。  相似文献   

8.
援马尔代夫中马友谊大桥主桥为(100+180+180+140+100+60)m混合梁连续刚构桥。该桥跨中部分梁段采用变高度钢箱梁,单箱双室倒梯形结构,横向两侧设置挑臂,桥面总宽21.0m。钢箱梁采用节段全焊接制造,节段间采用栓焊组合方式连接。钢箱梁材质为桥梁用结构钢,其外表面与大气接触的顶板、底板、边腹板和挑臂采用耐大气腐蚀钢;端部设密封门,实现气密防腐;内、外表面均采用长效防腐涂装,利用综合防腐措施以提高钢梁在海洋环境下的耐久性。采用UHPC+SMA13的复合铺装结构以提高铺装耐久性。钢箱梁采用工厂小节段制造、现场大节段拼装、纵向顶推就位的方法施工。  相似文献   

9.
布里格里格河谷斜拉桥项目位于摩洛哥王国境内拉巴特绕城高速公路上,离首都拉巴特市区30km。大桥全长951.66m,主桥采用(183+376+183)m叠合梁斜拉桥,桥塔和主梁在塔、梁交接处固结。斜拉桥主梁采用边主梁结构,混凝土边主梁之间通过金属横梁连接,金属横梁上安装预制混凝土桥面板,桥面宽29.82m。梭形混凝土桥塔由四肢分离式曲线型塔柱组成,造型优美,塔墩基础均采用扩大基础。全桥共设80对斜拉索,采用平行钢绞线拉索体系,空间呈扇形索面布置。主梁0号块在桥塔处的临时支架上施工,主梁标准节段采用牵索挂篮施工工艺。  相似文献   

10.
《公路》2021,66(7):160-164
珠海市洪鹤大桥主航道桥为主跨500m的双塔双索面叠合梁斜拉桥,为缩短大桥双悬臂状态的时间,保证大桥整体结构的安全,主梁施工采用双节段循环、湿接缝同步浇筑的施工工艺,并对双节段循环施工工序的主梁受力状态进行了分析,结果表明:双节段循环施工阶段,第一个节段钢梁、桥面板混凝土的受力状态变化较大;成桥后,主梁结构应力值比单节段循环施工增大7.0%~11.4%,但应力值仍满足规范要求。  相似文献   

11.
广州南沙港铁路龙穴南特大桥主桥原设计为主跨260m的钢桁梁柔性拱桥,因防洪要求,需将主跨扩宽至448m。针对部分引桥已经施工且工期紧迫的实际情况,选取3种变更桥型方案(预应力混凝土-钢箱混合梁斜拉桥、钢壳混凝土-钢箱混合梁斜拉桥、钢桁梁斜拉桥)进行比选,最终确定采用纵断面调整小、施工方便、工期短、经济性好、对通航影响小的(60+60+70+448+70+60+60)m预应力混凝土-钢箱混合梁斜拉桥方案。该方案设计时对传统混合梁箱形截面进行了优化,提出内置边纵梁箱形截面,该截面形式在提高主梁竖向和横向抗弯性能的同时节省了钢材;采用栓、焊结合的钢箱梁拼装工艺,缩短了施工工期;采用外置式锚拉箱,结构简洁、传力明确且方便安装和检修。对变更设计后主桥的抗风和车-桥耦合动力性能进行研究,结果表明各项性能均满足要求。  相似文献   

12.
马来西亚槟城二桥主桥为双塔三跨预应力混凝土斜拉桥,塔梁固结,跨径布置为(117.5+240+117.5)m。主梁采用宽34.6m的肋板式"组合结构"断面;桥塔采用H形塔,斜拉索采用平行钢绞线斜拉索,扇形布置,每根塔柱18对斜拉索,塔上采用转索鞍锚固,梁上采用齿块锚固;基础为2.3(上)~2.0(下)m大直径钻孔桩。该桥设计中,主梁采用组合结构断面设计方案和后支点挂篮+施工时序的优化设计方案,解决了英标重型汽车荷载下桥面板受力验算和主梁预应力验算的双重难题;同时在主梁分析计算中提出了精细的计算方法,获得主梁及桥面板的真实受力状态,对横隔板采用空间梁格分析方法进行计算,确保结构受力安全。  相似文献   

13.
临沂南京路沂河大桥位于8度强震区且跨越断裂带,主桥采用飞雁式异形拱桥与V形墩结合的组合体系,采用大吨位摩擦式减隔震支座,以提高结构抗震性能。主桥两侧(30.3+34.2)m采用预应力混凝土连续梁;中间(135.5+135.5)m为飞雁式异形拱桥,拱桥采用双边箱钢-混叠合梁,主拱采用矩形钢箱变截面拱肋,拱肋轴线为异形偏态拱轴线,不设风撑,拱梁固结,梁端设水平系杆平衡水平推力。下部边、中V形墩均采用大悬挑箱形截面混凝土结构,群桩基础。大桥采用先梁后拱的施工顺序,叠合梁采用多点平衡顶推施工,拱肋采用桥位少支架大节段拼装施工。  相似文献   

14.
赤壁长江公路大桥主桥为跨度布置(90+240+720+240+90)m的双塔双索面斜拉桥,桥面全宽36.5m。主梁采用结构刚度大、抗风稳定性好、桥面铺装耐久性好的结合梁。对比双边工字钢、双边箱、开口箱及PK箱4种截面形式钢主梁的截面特性,最终采用受力满足要求且预应力施加效率较高的双边箱截面钢主梁。钢主梁底板既变宽又变厚。钢主梁连接采用栓焊混合的方式,其顶板采用焊接、腹板和底板采用栓接。混凝土桥面板标准段厚度采用26cm。边跨采用加厚桥面板的方式进行压重,边跨桥面板厚度采用59cm,桥面板厚度过渡位置设在次边跨距离辅助墩22m处。索梁锚固采用锚拉板形式,为提高主梁截面宽度利用率,将锚拉板布置于钢主梁外腹板正上方。  相似文献   

15.
厦漳跨海大桥南汊主桥为跨径布置135m+300m+135m的双塔斜拉桥.该桥主梁采用钢-混结合梁,双工字形钢主梁、横梁和小纵梁形成钢构架,与混凝土桥面板通过剪力钉连接,在工字形钢主梁的上翼缘板上焊接锚拉板.对主梁进行整体和局部分析,并对主梁混凝土桥面板正应力和存放时间2个关键问题进行研究.分析结果表明:钢主梁和混凝土桥面板受力均满足规范要求,且有一定的安全储备;结合梁斜拉桥混凝土桥面板正应力分析中必须考虑弯矩和轴向力综合作用下的剪力滞效应的影响;混凝土桥面板存梁时间对主梁受力有影响,建议存梁时间不宜小于半年.  相似文献   

16.
水土嘉陵江大桥主桥为260m+388m+128m的高低塔双索面斜拉桥,主梁采用钢混叠合梁.该文介绍该桥各主要结构的设计,通过建立有限元整体计算模型对主梁、桥塔、斜拉索等的受力进行分析,并对其施工方案进行介绍.  相似文献   

17.
文山马鹿塘特大桥主桥为(63+137+480+137+63) m双塔双索面斜拉桥,大桥单侧与连拱隧道相接。主梁采用双工字形钢-混组合梁,桥面全宽32.2 m;桥塔采用钻石形混凝土塔,两岸桥塔塔高分别为247 m和254 m;斜拉索按空间双索面对称布置。整幅式桥梁桥隧顺接采用双线分离设计,避免了桥梁整体加宽或设置整体式大跨隧道,同时缩短了连拱隧道长度。为降低汽车、温度和风等荷载作用下的结构响应,在塔梁间设置了弹性刚度为12 MN/m的纵向弹性约束体系,静、动力作用下梁端位移分别下降37.4%和35.9%、桥塔塔柱底纵向弯矩分别降低19%和20%,静力作用下钢主梁应力减小约30 MPa、桥面板抗裂应力储备提高1.13 MPa。辅助墩墩顶主梁采用10 cm落梁设计,墩顶组合梁桥面板抗裂应力储备提升117.7%,且其它主体结构受力未发生显著变化。组合梁采用双节段循环施工方案,有效缩短了主梁施工工期。  相似文献   

18.
正圣拉扎尔大桥(Saint Lazare Bridge,见图1)靠近法国巴黎蓬卡迪火车站,跨越20条铁路线。主梁采用边主梁结构,2道主纵梁之间采用I形横梁连成格构体系,横梁安装间距为3m。桥面板的结构形式是该桥设计的难点之一。最初决定采用钢桥面板,但从经济性方面考虑,混凝土桥面板更有优势。但混凝土桥面板方案仍有不足:结构总重量增加;在繁忙的铁路线上方,安装和拆除浇筑混凝土的模板较困难;工期长,对交通影响较大;费用高。  相似文献   

19.
预应力混凝土槽形梁桥的主梁连接板在运营过程中易产生开裂病害,为修复桥面板的裂缝,改善桥梁受力,提出超高性能混凝土(UHPC)薄层加固法(在桥面板底部浇筑1层UHPC,与原结构整体受力),以沪嘉高速公路蕰藻浜大桥加固项目为背景,论述该方法在该桥加固中的应用。为检验加固效果,采用ANSYS建立甲式桥面板(槽形主梁连接板)的局部有限元模型进行应力分析,并通过荷载试验分析甲式桥面板加固前、后的受力及变形。通过理论和试验分析可知:加固后,在车辆荷载作用下,甲式桥面板的横向应力降至0.5 MPa以下,UHPC层拉应力为2.5MPa;甲式桥面板的横向应变降低了约65%,竖向挠度降低了约60%;UHPC层的应力实测值与有限元理论值基本一致。说明UHPC薄层加固法可有效改善桥面板受力,提高桥面板的刚度,减小桥面板的挠度。  相似文献   

20.
千岛湖大桥主桥设计构思   总被引:4,自引:3,他引:4  
陈铭  杨正武 《桥梁建设》2003,(2):35-37,49
根据桥址处建桥自然条件的特点及位于著名风景区的地理位置要求,千岛湖大桥主桥采用(70+7×105+70+40) m多孔长联V形墩预应力混凝土连续刚构,基础采用大直径嵌岩钢管混凝土桩.着重介绍了大桥的桥型、结构整体构思及桩基结构型式选择与施工方案,并简述了主梁、主墩的设计与施工.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号