首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
珠江黄埔大桥南汊悬索桥北锚碇位于珠江中心岛上,其基础设计采用圆形地下连续墙方案。地下水位受潮汐影响,对地下连续墙施工影响较大,如何优化各施工环节、控制成槽质量是施工成功的关键。介绍黄埔大桥锚碇基础地下连续墙施工技术。  相似文献   

2.
《公路》2017,(1)
传统的重力式锚碇设计方法不考虑围护结构对基础承载力的贡献,随着施工技术与质量的进步,发挥地连墙围护结构承载力贡献的新型复合基础成为新的研究方向。以虎门二桥工程锚碇基础为背景采用有限元软件模拟了锚碇基础的建造过程,分析了缆力施加前后地下连续墙-锚碇的受力与位移变化,验证了地下连续墙-锚碇复合基础协同承载假定。研究表明:地下连续墙的抗剪强度、地下连续墙与周围土体的摩阻力对锚碇基础水平向抗滑移承载力均有贡献;采用地下连续墙作为基坑围护结构的大跨悬索桥锚碇基坑设计可考虑地下连续墙-锚碇基础的协同承载特性。  相似文献   

3.
《公路》2021,66(8):115-123
传统的重力式锚碇基础设计不考虑围护结构对基础承载力的贡献,而地下连续墙作为围护结构由于自身的结构特性,会在锚碇基础的承载时发挥一定作用。针对虎门二桥东锚碇基础,采用有限元方法分析了施加缆力前后锚碇基础的承载特性,并对地下连续墙在锚碇基础中荷载分担比和锚碇最大水平位移的影响因素进行了研究。结果表明,缆力的施加导致锚碇基础的水平剪力和弯矩均迅速增大并重新分布,地下连续墙始终承担了一定比例的荷载;施加缆力后,锚碇基础和地下连续墙的内力的峰值点或拐点均位于强风化软岩层与中风化软岩层分界面处,地下连续墙嵌入中风化软岩层的部分发挥了较大承载作用;地下连续墙的墙厚对地下连续墙在锚碇基础中的内力比影响最大;岩层弹性模量和地下连续墙的嵌岩深度对锚碇最大水平位移控制作用影响大。  相似文献   

4.
介绍阳逻长江公路大桥南锚碇基础关键分项工程———圆形地下连续墙、内衬支护和封底的设计施工情况。该分项工程的顺利实施是南锚碇基础成功建设的关键。  相似文献   

5.
赣州大桥主桥为双塔地锚式悬索桥,其东锚碇基础支护结构为圆形地下连续墙,分为I期、Ⅱ期两种槽段,采用“冲抓法”成槽.该文结合施工实际,对东锚碇基础地下连续墙的施工工艺进行介绍和分析,并从技术和管理角度阐述其质量控制措施.  相似文献   

6.
《公路》2020,(8)
地下连续墙作为悬索桥锚碇基础的重要围护结构,最早出现在1980年代的日本,刚度大、占地少、施工速度快、防渗性能好、经济效益高等优点使其得到广泛应用。我国自虎门大桥引进并采用地下连续墙作为锚碇围护结构以来,多座越江跨海跨悬索桥采用了地下连续墙围护结构,如阳逻长江大桥的圆形地下连续墙、润扬大桥的矩形地下连续墙、南京长江四桥的八字形地下连续墙、深中通道海中八字形地下连续墙等。随着施工装备及工艺的进步,探讨地下连续墙作为基础的永久受力结构的报道越来越多,日本青森大桥将地下连续墙作为索塔基础使用,虎门二桥坭洲水道桥、棋盘洲长江大桥、清云西江特大桥和深中通道等都在探索地下连续墙作为永久结构的一部分参与锚碇基础的受力,正处在施工过程中的土耳其恰纳卡莱大桥采用地下连续墙作为壁板桩参与锚碇基础的永久受力。正在进行前期研究的广州市莲花山过江通道,桥梁方案之一为主跨2 100m的双向12车道悬索桥,锚碇基础的埋置深度与尺寸规模的降低,对工程具有重要意义,采用地下连续墙参与永久结构受力也是重要的研究方向之一。  相似文献   

7.
棋盘洲长江公路大桥主桥为主跨1 038m的单跨钢箱梁悬索桥。该桥南锚碇采用内径61m、壁厚1.5m的圆形地下连续墙基础,地下连续墙嵌入中风化岩层至标高-50.5~-41m,总深度58~67.5m。在地下连续墙内侧设置1.0~2.5m厚的钢筋混凝土内衬,锚碇基础封底底板厚6m、顶板厚7~15m,锚碇后锚块区域与地下连续墙基础顶板连为一体。沿地下连续墙底部设置灌浆帷幕;布置6个孔径为600mm的降水管井进行坑内降水、排水。结合项目建设条件对该地下连续墙基础进行强度、稳定、地基承载力及墙底岩石劈裂验算,结果均满足规范要求。目前该地下连续墙基坑已开挖至设计标高并完成首层封底。  相似文献   

8.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥。江北侧锚碇设计时对沉井基础和地下连续墙基础进行比选,综合考虑开挖范围、工程造价、施工工期等,最终采用基底深置的地下连续墙基础,以下伏基岩弱胶结泥质砂岩作为基础持力层,基础高49.5 m,地下连续墙墙底嵌入中等胶结泥质砂岩,地下连续墙高55.5 m。为减小锚碇基础的开挖量,采用大悬臂外挑锚块结构结合CFG桩复合地基加固技术的新型复合型地下连续墙基础,地下连续墙基础直径缩小至60 m,节省了工程造价。锚碇基础施工中基坑分层开挖,同时进行内衬砌施工。采用PLAIXS 3D软件对锚碇施工阶段及运营阶段进行有限元模拟分析,基坑开挖时地下连续墙结构受力安全,锚碇基础地基承载力、地基沉降结果均满足规范要求。  相似文献   

9.
阳逻长江大桥南锚碇基坑工程封水、降水、排水系统设计   总被引:1,自引:0,他引:1  
徐国平  刘明虎  王连新 《公路》2004,(10):17-23
武汉阳逻长江大桥主桥,南锚碇基坑工程采用圆形地下连续墙加内衬的支护结构型式,其封水、降水、排水系统是基坑开挖施工成败的关键,也密切关系到长江主干堤的防洪安全。主要介绍南锚碇基坑封水、降水及排水系统的设计,以及防洪风险控制措施、施工预案等。  相似文献   

10.
通过珠江黄埔大桥悬索桥锚碇设计与施工技术研究,初步形成嵌岩地下连续墙设计理论,形成嵌岩地下连续墙成套施工工艺,在不设止水帷幕情况下保证基坑开挖地下连续墙不渗漏和锚碇周围土体不沉降,设计了低水化热抗裂混凝土,实现了大体积混凝土不设冷却水管情况下有效控制温度裂缝的发生,与国内外同类技术相比具有创新性.  相似文献   

11.
武汉阳逻长江大桥锚碇设计   总被引:1,自引:0,他引:1  
刘明虎  徐国平  刘化图 《公路》2004,(12):39-47
武汉阳逻长江大桥主桥为主跨1280m悬索桥,北锚碇采用放坡大开挖深埋扩大基础实腹式锚体重力式锚;南锚碇采用支护开挖深埋圆形扩大基础框架式锚体重力式锚,其基坑工程采用圆形地下连续墙加内衬的支护结构型式;在国内首次采用“无粘结可更换”预应力锚固系统。本文概述了锚碇的总体构造、基坑工程、锚体及锚固系统的结构设计及技术特点。  相似文献   

12.
刘化图  刘明虎  徐国平 《公路》2004,(10):15-17
武汉阳逻长江大桥土桥南锚碇基坑工程采用圆形地下连续墙加环形内衬的支护结构形式,介绍了基坑支护结构中内衬的结构分析方法和计算结果。  相似文献   

13.
莫桑比克马普托(M aputo )大桥主桥为单跨680 m悬索桥,为确定马普托大桥锚碇基础方案,依据大桥桥位处的地质和水文情况,以及重力式锚碇的结构受力特点,针对锚碇基础基底持力层选择、施工工艺的适用性、技术可行性、经济性、合理性,分别对沉井基础和地下连续墙基础进行研究。研究结果表明:采用地下连续墙基础,施工期间可以避免由于地质情况变化带来的风险,如翻砂、突涌等;可以严格控制锚碇基础施工过程中对周围土体造成的沉降,最大限度地减少对周围铁路正常运营的影响。在确定地下连续墙基础形式后,针对施工过程中的突涌问题,对深地下连续墙和浅地下连续墙+灌浆帷幕+深井抽排水降低水头方案进行研究。研究结果表明:采用深地下连续墙基础,投入设备相对单一,施工工艺、工序简单,施工工效相对较高,施工工期较短,工期可控,应为马普托大桥合理的锚碇基础方案。  相似文献   

14.
某大桥为双塔双跨悬索桥,主跨跨径达到1 688 m,边跨钢箱梁长548 m,其西锚碇采用厚度为1.5 m的地下连续墙作为锚碇基坑开挖的主要围护结构,地下连续墙深入中、微风化泥岩,基坑开挖深度达到22.2 m,采用水泥粉喷桩加固软土。基于该大桥锚碇基坑围护结构施工,探讨超深锚碇基坑围护结构施工关键技术,并给出部分施工建议。  相似文献   

15.
薛磊 《城市道桥与防洪》2024,(1):182-185,198
随着地下建设空间的进一步利用,地下连续墙应用范围不断向下拓展。目前,地下连续墙已经作为永久受力结构应用于建、构筑物主体结构中。基于上海远方相关地下连续墙锚碇基坑实践,对地下连续墙作永久受力结构的应用进行探讨,并针对框架式地下连续墙、桩-墙咬合式地下连续墙、圆形地下连续墙施工关键技术进行阐述。结果表明,作永久受力了的地下连续墙结构通常较为特殊,部分为特殊结构形式,部分包含特殊接头形式,在目前的施工技术下是可以实现地下连续墙作永久受力结构的。用集约高效,推进城市功能复合。创建“就近职住、 功能复合”的现代城市,在规划及设计中进行街道一体化设计。  相似文献   

16.
地下连续墙作为锚碇基础开挖的重要防护结构,施工质量及工期控制对整个项目影响极大,尤其在非洲等欠发达地区,为保证莫桑比克马普托大桥北锚碇地下连续墙施工顺利进行,展开了试验槽段的研究,论述了试验槽的实施目的、实施过程以及对地下连续墙正式槽段施工的指导意义。  相似文献   

17.
综合考虑防洪、通航、港口等建设条件限制,棋盘洲长江公路大桥主桥采用主跨1 038 m的单跨钢箱梁悬索桥,一跨跨越长江。该桥加劲梁采用扁平流线型钢箱梁;桥塔采用门形混凝土塔,桥塔基础采用分离式承台+大直径群桩;南、北重力式锚碇分别采用圆形地下连续墙基础和扩大基础,锚碇锚固系统采用无粘结预应力锚固系统;主缆采用标准抗拉强度1 860 MPa的预制平行钢丝索股(PPWS法施工),吊索采用标准抗拉强度1 670 MPa的平行钢丝索股(PWS法施工)外套双层PE防护。设计过程中通过研究地下连续墙重力式复合锚碇基础受力特点和渗流规律,优化了南锚碇工程规模;提出基于频遇组合确定主梁纵向挡块间隙量的计算方法,有效减小了伸缩装置规格;分析正交异性钢桥面板疲劳性能影响因素并进行优化设计,提升了桥面板综合性能。  相似文献   

18.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

19.
圆形基坑支护结构在开挖期间具有良好的受力特性,在大型锚碇基础基坑支护中较为常用。根据xx大桥东锚碇基坑支护工程对新型桩-墙咬合圆形锚碇基坑支护施工工艺进行施工过程关键技术研究。结果表明:桩基施工作为Ⅰ期施工段,地下连续墙施工作为Ⅱ期施工段,Ⅰ期桩基施工应跳槽施工,Ⅱ期地连墙施工时应减少与Ⅰ期桩基混凝土龄期差;钢导墙代替常规导墙能有效缩短工期,避免常规导墙制作的繁琐工艺。  相似文献   

20.
以马普托大桥南锚碇地下连续墙的设计优化为例,介绍复杂水文及地质条件下地下连续墙的施工技术。该技术具有施工质量高、进度快、成本节约的特点,具有较好的施工效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号