首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
对上海轨道交通9号线某区间缓和曲线段地铁运行引起的地表振动进行了现场测试,并对实测的地表振动加速度进行了时域、频域及1/3倍频程分析。结果表明:在缓和曲线段,地铁列车行驶引起的地表横向加速度有效值是竖向加速度有效值的0.9~3.1倍;地表加速度频率分布在30~120 Hz,其中最显著的频率为30~50 Hz;加速度振级随着与隧道中心线水平距离的增加呈减小趋势,且在距离隧道中心线5 m、30 m时出现放大区;地表土体振动加速度幅值、频谱峰值随着地铁列车速度增大基本呈增大趋势。  相似文献   

2.
地铁运行列车引起建筑物低频振动的数值分析   总被引:3,自引:0,他引:3  
采用施加在轨道上的一系列移动轴荷载模拟列车作用,利用轨道结构连续弹性双层梁模型,计算出某城市地铁列车运行产生的轨枕与隧道之间的作用力。在此基础上,建立隧道-土层-建筑物有限元模型分析了不同车速下不同距离建筑物中不同楼层的振动规律。分析结果表明:移动列车轴荷载引起建筑物低频振动;车速越高,建筑物的竖向振动水平越高;随着到轨道中心线距离的增加,建筑物竖向振动水平逐渐减小;不同楼层竖向振动水平基本接近。  相似文献   

3.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

4.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

5.
林峰 《铁道勘察》2023,(3):149-154
地铁列车振动引起的动力响应是地铁营运期间的重点问题。为研究地铁列车振动荷载作用下近接隧道的动力响应,依托工程实例,以激振力函数法模拟列车振动荷载,利用FLAC3D软件建立隧道及周围土体三维数值模型,对近接隧道结构不同位置的振动加速度、应力、位移响应进行模拟分析。结果表明:(1)隧道底板的加速度响应大于顶板,左侧壁、中板和右侧壁,中部位置的测点加速度峰值最大;(2)隧道左侧壁和右侧壁上测点距底板距离越大,应力响应越小,而中板上测点的应力响应基本不随距离变化;(3)隧道底板上各测点竖向动位移均随时间不断增大,并且大致可分为3个阶段,随着底板上测点与地铁隧道的距离增加,其竖向动位移量呈线性减小。  相似文献   

6.
以南昌地铁1号线的某标段工程为研究背景,建立曲线地段的轨道—隧道—大地三维有限元模型,同时考虑竖向和水平向轮轨作用力的影响,计算得到了地铁列车通过曲线时诱发的环境振动。计算结果表明:当曲线的半径一定时,地铁在曲线地段运行引起的钢轨、隧道壁和地面振动响应均与列车行驶速度密切相关;曲线地段地面水平向振动加速度级要大于竖向,平均高出5 d B;水平向和竖向振动加速度级均表现出随着与隧道中心线间距离的增加而呈波动性衰减特性,频率越高振动加速度级衰减的速度越快;环境振动在衰减过程中都会出现放大区,竖向和水平向的振动放大区出现的位置有所不同,但振动放大区的主频差别不大。  相似文献   

7.
对南昌西站综合交通枢纽进行模型仿真,从时域和频域的角度分析南昌地铁4号线对该站的振动影响。研究南昌地铁4号线在不同行驶速度、不同隧道埋深下的振动传播规律及频率分布特点。研究结果表明,在地铁列车荷载作用下,南昌西站的振动幅值随着振源距离增大而减小,在地面距离轨道中心线24~36 m、60~72 m的区域出现振动放大区。车站不同结构层的振动频率分布特性基本一致,主要集中在0~60 Hz范围内。车站结构横向环境振动水平比竖向环境振动小,竖向振动响应与横向、纵向的振动响应频域分布较为一致。车站结构关键点出现最大振级的频率随着结构高度的增大逐渐向低频移动。  相似文献   

8.
新线隧道列车运营对既有地铁结构振动影响的研究   总被引:1,自引:1,他引:0  
以在建北京地下直径线为背景,选取了2个典型评估断面,建立二维动力有限元计算模型,应用车辆一轨道耦合动力学理论,计算得到作用在隧道结构上的列车动荷栽,并作为激励作用于有限元模型上,通过数值模拟计算,预测新线隧道北京地下直径线开通运营后对临近既有地铁结构振动的影响.根据对结构物安全的振动控制标准,确定以竖向速度作为既有地铁结构振动响应的安全性评估标准.结果表明:地铁列车运行对其自身结构的振动影响要大于地下直径线列车运行对地铁结构的振动影响;地下直径线列车的运营使邻近地铁结构动力响应增加,对其耐久性和正常使用有一定影响,建议在这些区段采取减振措施.  相似文献   

9.
为探究黏弹阻尼道床阻尼厚度对隧道及地表振动衰减特性的影响,为工程设计提供理论支持。利用ANSYS建立土体-隧道-道床平面有限元模型,分析在5~25 Hz频率荷载的作用下,整体道床和黏弹阻尼道床在隧道结构中的振动响应,并分析这两种道床下地表距离隧道中心线不同距离的振动加速度的衰减特性。结果表明:荷载频率小于10 Hz时,在地表距离隧道中心25 m左右,振动有明显的放大区域;荷载频率为10~20 Hz,振动加速度随道床阻尼层厚度降低,阻尼层越厚振动衰减越明显;随着黏弹阻尼道床阻尼层厚度增加,隧道衬砌底部振动加速度有效值依次降低,隧道壁竖直方向振动衰减更加明显,阻尼层每增加2 mm,振级降低1~4 d B。  相似文献   

10.
更换减振扣件前后地铁运营引起地面振动的研究   总被引:2,自引:0,他引:2  
选择北京地铁5号线宋家庄—刘家窑区段,在更换减振扣件前后2次测试地铁正常运营引起的地面水平及垂向振动加速度,对其进行频谱分析;建立轨道—隧道—土层的三维有限元模型,利用实测数据,研究垂直于地铁线路方向不同距离的振动加速度响应规律。结果表明:地铁线路位于曲线段时,地面水平与垂向振动加速度峰值和有效值基本相等;在安装DTⅥ2扣件的轨道地段,地铁列车运营引起的地面主要振动频率为40~80 Hz,在安装Vanguard扣件的轨道地段为20~40 Hz,说明Vanguard扣件有较突出的减振效果;随着距地铁隧道中心线距离的增加,地面振动加速度响应表现出衰减的趋势,在离开隧道轴线一定距离处,存在地面振动加速度放大区,水平和垂向振动加速度放大区的位置有所不同。  相似文献   

11.
在西安地铁2号线永宁门区段进行振动监测。通过振动实测结果,分析地铁列车单独运行时在不同运行速度工况下的地铁隧道、永宁门城墙、永宁门城楼的振动响应。结果表明:与普通轨道相比,钢弹簧浮置板道床的隧道壁水平向振动加速度幅值能减小45.1%,隧道壁垂直向振动加速度幅值能减小29.2%;永宁门城墙水平向、垂直向最大振动速度均为0.035 mm/s,永宁门城楼水平向、垂直向最大振动速度分别为0.083 mm/s和0.047 mm/s,均满足相关标准限值和国家文物局的建议值要求;地铁列车运行速度变化对其上部文物振动速度有一定的影响,但影响较小。  相似文献   

12.
高速铁路32m简支箱梁声辐射特性研究   总被引:3,自引:0,他引:3  
将列车-轨道-桥梁耦合振动理论与声辐射分析边界元法相结合,分析高速铁路32m单箱单室和单箱双室箱梁声辐射特性。结果表明:单箱单室箱梁动力响应均大于单箱双室箱梁,2种截面梁型在10~100Hz范围内振动密集,表现出结构局部振动特性,须采用板单元进行动力分析;箱梁结构噪声以低频为主,分布在小于250Hz频带内,适合采用边界元法求解;各场点声压级在梁底空间变化较小,距离每增加2m,声压级平均降低1.2dB,越靠近地面,声压级衰减越小;各场点声压级随与桥梁中心线距离的增大而减小,距离每增加9m,声压级平均降低3.7dB;距桥梁中心线25m处,各场点声压级随距地面高度增加而减小;行车速度为160~240km/h时,单箱单室箱梁比单箱双室箱梁声压级平均大14.2~4.3dB,速度越高,声压级差别越小。  相似文献   

13.
为研究高铁列车和地铁列车同向以不同速度行驶时的振动对高铁隧道衬砌结构的影响,采用模拟的列车振动荷载,在铁轨上施加对轮轴的模拟振动荷载并考虑列车速度来研究同向列车振动荷载下高铁隧道衬砌的动力响应特性。结果表明:在同向行驶的列车振动荷载作用下,对于隧道特定监测点而言,存在一个列车行驶振动响应的影响区,列车行驶至该监测点时,其振动响应最大;高铁隧道中部横断面衬砌振动响应从上到下逐渐增大,拱脚、拱底竖向应力幅值分别为拱腰的1.63、2.26倍,加速度最大幅值分别为拱腰的1.21、1.29倍。  相似文献   

14.
采用SIMPACK动力仿真软件,建立适用于地铁线路参数分析的车-线耦合动力学模型,仿真线路曲线参数对列车的动力响应结果,分析曲线参数对列车运行性能的影响规律和控制因素,给出时速120 km的轨道交通线路曲线参数推荐值。  相似文献   

15.
槽形梁道碴桥面是适用于钢桥的一种桥面新形式,为研究该种桥面的钢桥动力性能,以某大跨度钢桁拱桥为研究对象,将列车、桥梁视为联合动力体系,建立了列车与大跨度钢桁拱桥的车桥耦合动力分析模型.在建立桥梁的有限元分析模型时,对该桥所采用的槽形梁形式桥面选用了梁格法来建模.计算桥梁的自振特性;采用计算机模拟方法,计算了ICE高速列...  相似文献   

16.
大跨度铁路桥梁梁端伸缩装置对列车走行性影响的研究   总被引:1,自引:0,他引:1  
梁端伸缩装置是大跨度桥梁的重要组成部分,是容易受损的构件之一,对高速车辆的走行性影响较大。本文针对大跨度铁路桥梁梁端伸缩装置,建立结构动力分析的有限元模型,通过多工况车-桥(线)耦合振动计算,分析梁端伸缩装置自身变形、安装误差及梁端折角等因素对列车走行性的影响,提出车辆平稳性和乘客对车辆振动感觉的评判标准,并进一步基于车辆的平稳性和乘客对车辆振动的感觉确定车速及梁端竖向折角限值。研究表明,车辆响应对梁端竖向折角较为敏感。  相似文献   

17.
地铁运行荷载引起的隧道地基土动力响应分析   总被引:10,自引:2,他引:8  
利用轮轨耦合模型,计算某城市地铁列车运行时产生的轮轨力。利用有限单元法分析该轮轨力引起的地基土动应力比值的变化规律、影响范围及动应力比值与列车运行次数的关系。分析结果表明,列车振动引起的拱腰附近及拱底轨枕正下方土层的动剪应力较大;列车运行的水平向影响范围大约为15 m,垂直向影响范围大约为3 m;列车运行初期,动剪应力随列车通过次数的增加而增大,运营后期,增加幅度趋于平缓;在现行的高低偏差管理容许值范围内,线路局部地段的高低不平顺对地基土动剪应力比的影响不大。  相似文献   

18.
房建  雷晓燕  练松良  刘林芽 《铁道工程学报》2011,(5):45-46,48,50,85
研究目的:本文旨在通过现场实测和仿真计算研究曲线轨道不平顺对车辆动力特性的影响。首先,利用轨检车实测数据对我国提速线路轨道不平顺与车辆振动加速度之间的关系等进行了统计分析及相关分析,对武九线曲线段的轨道谱也进行了初步估计。其次,采用动力学仿真软件Adams/Rail建立车辆-轨道动力学模型,并以实测数据作为验证手段,分析了轨道不平顺类型、幅值和波长对车辆运行平稳性和安全性的影响,提出了对行车运行有不利影响的不平顺波长范围。研究结论:高低不平顺对列车垂向振动影响显著,轨向不平顺对列车垂向、横向振动均有显著影响,当列车以110 km/h运行时,为了避免列车在不平顺激励下产生共振,应该对2.5 m、3.72 m、20 m和28 m波长的轨道不平顺进行控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号