首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提升前纵梁的碰撞性能及轻量化水平,建立了全铝车身前部结构的正面碰撞有限元模型,对前纵梁的耐撞性与轻量化优化方法进行了研究。以前纵梁的3种不同截面形式为对象,对比分析了截面形状的变化对碰撞性能的影响。在此基础上,以碰撞性能及质量为优化目标,分别对3种不同截面形式的前纵梁进行多目标优化。进一步在目标空间中,将3种不同截面形式前纵梁的Pareto解集按其目标函数向量进行相互比较,最终得到了考虑截面形式影响因素的Pareto解集。此优化方法为前纵梁的耐撞性与轻量化优化提供了新的解决方案。  相似文献   

2.
以前纵梁为研究对象,基于SFE Concept参数化白车身模型,对正面100%刚性墙碰撞下的整车耐撞性能进行数值模拟和优化设计。文中引入"分析驱动设计"的理念,综合考虑有效加速度、效率、侵入量等多个评价指标,对纵梁的截面、厚度、长度等参数进行DOE实验设计并建立数学模型,总结各设计变量对碰撞性能的影响规律,最终得到纵梁的最优化设计,提高了整车的耐碰撞性能。  相似文献   

3.
基于耐撞性的前纵梁焊点模拟及其优化设计   总被引:1,自引:0,他引:1  
建立了3种焊点有限元模型,并通过薄壁梁(代表前纵梁)落锤试验,验证其模拟精度。结果表明,Beam单元最适合碰撞过程中焊点的模拟。分析了焊点失效对耐撞性的影响,同时采用试验设计和响应面法,对薄壁梁的几何参数和焊点位置进行了优化。结果提高了耐撞性,减小了焊点失效的风险。实车试验证明了该方法的合理性。  相似文献   

4.
为提高汽车前纵梁结构的耐撞性和轻量化水平,文章对其进行多目标优化设计。基于动态落锤冲击试验,建立并验证了前纵梁有限元模型的准确性以及建模方法的可靠性。结合试验设计、粒子群优化(PSO)算法改进的支持向量机回归模型(SVR)和非支配排序遗传算法Ⅱ(NSGA-Ⅱ),以减轻前纵梁质量和增加其比吸能为优化目标,对前纵梁的结构进行确定性优化和可靠性优化。结果表明,优化后的前纵梁结构耐撞性和轻量化水平都有了提升,同时也保证了设计的可靠性。  相似文献   

5.
以某车型的前纵梁为研究对象,应用CATIA软件建立该车型前纵梁的三维几何模型。利用有限元理论与方法,建立该纵梁基于HyperMesh/LS-DYNA环境下的有限元模型,LS-DYNA求解器对该纵梁进行轴向碰撞性能的仿真分析。分别从梁的截面形状、诱导槽的位置、深度、形状、梁的厚度、加强板、蜂窝铝填充材料几个方面来研究其对薄壁直梁轴向碰撞性能的影响,为汽车前纵梁的设计与研发提供理论参考依据。  相似文献   

6.
为提高汽车发生后撞时车身的耐撞性和轻量化效果,采用真空高压铸造铝合金后纵梁替代某电动车型传统钢制钣金焊接总成。从后撞耐撞性出发,通过拓扑优化,考虑压铸成形和连接工艺等要求,设计了压铸铝合金后纵梁,实现了后纵梁结构的模块化和轻量化。结果表明,铝液填充平稳,没有明显的冷隔、缩孔等缺陷,产品性能满足后撞和各安装点刚度要求。  相似文献   

7.
微型客车因其成本低廉,安全配置低,吸能空间有限,对车身结构的安全性设计有较高的要求.本文对某款成熟车型进行了正面碰撞仿真分析,并与试验结果进行对标,针对原车在车身安全设计方面的缺点,对该车的纵梁结构进行优化,对截面形状、加强板结构、诱导槽等进行改进设计,设置合理的前部刚度.优化后,车身最大加速度降低了38.5%,平均加速度降低了5.3%,结构耐撞性得到明显提高,纵梁加强板减重1.18 kg,并且碰撞相容性也得到了优化.结果表明,在乘员空间和约束系统不变的前提下,新结构使整车耐撞性有较明显的提高,乘员伤害值有明显降低.  相似文献   

8.
为满足车身轻量化和耐撞性设计的要求,采用材料替换与结构改进相结合的方法对前端进行优化。基于试验验证的整车正面碰撞模型,建立了铝制前端模型并与钢制设计方案进行了耐撞性对比。为提高铝制前端耐撞性能,设计了不同胞数的多胞构型截面,并在三点弯曲和轴向压溃工况下分析其吸能特性。运用多目标优化方法对多胞前端的结构参数进行寻优。结果表明,优化后的铝制多胞结构能在改善整车耐撞性的同时,显著减轻前端质量。  相似文献   

9.
基于正交设计的汽车前纵梁吸能结构的优化   总被引:1,自引:0,他引:1  
为了增强某款SUV车的耐撞性,提出了一种带诱导槽的八边形结构、可逐级吸收碰撞能量的前纵梁,并建立了其准静态纵向压溃和台车碰撞两种有限元模型。在台车模型中考虑了台车质心位置和车轮模型的刚度、高速旋转与摩擦特性的影响;采用正交试验设计法对前纵梁的材料、壁厚和焊点位置进行了优化,并将优化结果用于底盘结构。底盘耐撞性试验结果表明,优化后结构具有较好的吸能能力。  相似文献   

10.
运用碰撞仿真技术,对能够代表汽车前纵梁的6种薄壁直梁进行了截面形状选择;针对所选取的较优截面形状直梁的截面尺寸、板厚和材料强度进行了正交试验设计,以吸能、比吸能和压溃距离为主要评价指标建立了响应面模型并进行优化.结果表明,优化后的直梁在质量仅增加3.2%的情况下,不仅抗撞性明显提高,而且设计空间下降了约27.1%.  相似文献   

11.
车身前纵梁是汽车发生正碰时吸能和传递载荷的重要部件。为提高车身前纵梁的耐撞性和轻量化水平,利用CAE分析研究了不同截面形状铝合金前纵梁50km/h冲击载荷下的总吸能量、碰撞力峰值及其变形模式。结果表明,"日"字形截面前纵梁适用性最佳。搭载某纯电动车型,50km/h全正碰试验后,前纵梁前端发生轴对称变形,吸能模式合理,后段未发生折弯失稳。  相似文献   

12.
基于耐撞性能的白车身简化模型建模研究   总被引:1,自引:0,他引:1  
以白车身前纵梁为例,基于白车身的耐撞件能对设计初期简化模型的建模进行了研究.引入神经网络技术实现了白车身耐撞性能参数与梁单元特性参数的非线性映射,通过提取和储存梁单元的特性参数,实现了梁单元模型对传统壳单元有限元模型的等效替代和模型优化.研究表明,通过神经网络技术得到的梁单元模型能够准确体现白车身的正碰特性参数,可在概念设计阶段对车身耐撞性进行有效预测.  相似文献   

13.
以速达公司某款车型为基础,进行车型改型开发。优化前防撞梁、前纵梁和防火墙的结构和材料,开发了一款质量轻、安全性高的紧凑型A级轿车。通过试验和有限元法对改型开发前后车型耐撞性进行分析,以防火墙侵入量、整车加速度波形、吸能盒和前纵梁的变形模式及吸能效果为改型开发目标,进行车身优化设计。结果表明,实现车身轻量化的同时,改善了整车安全性能和NVH性能。通过实车正面碰撞试验验证了结构和材料优化方案是可行的。  相似文献   

14.
分析了车辆正面碰撞过程中纵梁在碰撞力传递中的重要作用,对某车型纵梁结构存在的问题进行了分析,提出了优化方案.仿真验证表明,优化后的纵梁变形模式改善,吸能效果得到很大提升,提高了前纵梁的抗撞性能.  相似文献   

15.
陈昌明  伍腾飞 《北京汽车》2008,(6):23-25,30
汽车前纵梁是汽车发生正面碰撞时的主要吸能部件之一,前纵梁吸能性的好坏,直接影响到整车耐撞性的好坏。文中建立了某轿车的前纵梁有限元模型,用LS-DYNA有限元软件仿真来得到其吸能性能,通过改进纵梁结构,得到比较满意的结果,30ms吸能量达到了13024J;也为以后纵梁的设计进行一些前期的研究。  相似文献   

16.
轿车车门防撞杆结构优化的研究   总被引:1,自引:0,他引:1  
为研究侧面碰撞中轿车车门防撞杆的耐撞性能,基于响应面法和试验设计,利用子结构模型,以质量最轻为目标,耐挤压力≥95kN为约束,分别对圆环、帽形和矩形3种不同截面的车门防撞杆的截面参数进行优化.结果表明,帽形截面的防撞杆质量最轻,耐挤压力最大,被选为最终设计.  相似文献   

17.
为了提高薄壁结构的耐撞性能,本文提出了一种高效的设计方法:。利用二次回归正交组合试验设计方案来选取设计点,在设计点处用有限元法代替传统试验来获取试验数据。然后通过最小二乘法建立了刚性墙最大位移、撞击力峰值和总质量的高精度响应面。综合考虑厚度的变化范围、安全性和轻量化要求,运用可行方向法对建立的响应面进行优化计算,得到了一组最优值。结果:表明本文的设计方法:具有很高的精度和计算效率,实现了提高薄壁结构耐撞性的目的:。同时也为车身复杂结构(如前纵梁、吸能盒等)的耐撞性设计提供理论依据和参考方法:。  相似文献   

18.
为使汽车节能减排,材料轻量化是其基本方法之一.车身前纵梁截面形状通常是矩形和六边形薄壁管,文章基于BCE单元研究了基于等轴向耐撞效能的矩形和六边形截面薄壁管材料替代轻量化设计分析方法,给出了用高强度钢替代低碳钢的结构轻量化设计实例,并对其碰撞特性进行了有限元计算模拟,验证了理论分析结果.指出以BCE单元模型为基础的材料替代轻量化设计方法对矩形和六边形截面薄壁管是行之有效的.  相似文献   

19.
针对行人保护柔性腿型(Flex-PLI)、RCAR低速碰撞、高速偏置碰撞3种工况,采用有限元建模方法,对某车型前保险杠系统进行耐撞性仿真分析,分析表明该车前保险杠系统不能满足碰撞安全性要求。以前保险杠系统主要结构参数为变量进行正交试验设计,利用综合分析法对前保险杠结构进行优化匹配。在结构优化的基础上,以厚度为变量利用响应面和多目标遗传算法对前保险杠系统的安全性能和质量进行了进一步优化,其整体耐撞性能得到提升。  相似文献   

20.
通过隐式参数化软件SFE CONCEPT进行车身框架结构的参数化建模,针对车身全参数正向设计进行性能驱动车身框架关键截面形状设计方法的研究。利用多学科设计优化软件iSIGHT集成SFE CONCEPT、求解器NASTRAN及数据处理器Matlab,建立优化集成系统平台,以实现产品开发过程优化的快速化及自动化。以门槛梁截面形状的优化设计为例,通过离散化的方法将优化问题转化成离散点位置的最优组合。优化过程以质量最小为优化目标,刚度值为约束条件,采用最优拉丁超立方试验设计和模拟退火算法,实现静态性能驱动车身框架关键截面的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号