首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6 自动变速器动力传递 (1)D位1档时动力传递路线 离合器A接合,发动机动力经液力变矩器涡轮和涡轮轴、太阳轮轴,与后太阳轮连接;行星架在1档单向超越离合器逆时针方向的锁止作用下固定不动,后太阳轮带动短行星轮,传给长行星轮齿圈和输出轴。 (2)1位1档时动力传递路线 制动器D接合,行星架由制动器D锁止。利用发动机怠速运转阻力实现发动机制动作用。  相似文献   

2.
4挡时,输入元件与1挡相同,即前进挡离合器(FC)接合,楔块式前进挡单向离合器(FCF)锁止;滑行离合器(CC)接合,前进挡离合器(FC)和滑行离合器(CC)同时驱动后太阳轮;同时直接挡离合器(DC)接合,驱动行星架,则整个行星齿轮机构以一个整体同步旋转,为直接挡,传动比为1:1。  相似文献   

3.
下面是不同档位动力传递路线与各部件的状态分析: 1.P/N档 P或N档叫,输入离合器C3结合,驱动输入单向离合器F2外圈,输入单向离合器F2锁止,动力传至前排(输入)太阳轮。但此时前排太阳轮、前排行星架/后排齿圈、后  相似文献   

4.
<正>二、丰田A761E型自动变速器动力流挡位矢量分析丰田A761E型自动变速器行星齿轮机构和换挡执行元件的布置如图6所示,动力传递路线示意图如图7所示,挡位各执行元件的状态如表3所示,各挡位传动效果如表4所示。下面详细分析各挡位动力流情况:1.1挡(含S61、S51、S41、S31、S21)动力流分析C1、F3、F4工作,当离合器C1接合、单向离合器F4锁止,则中排-后排共用太阳轮顺时针同速旋转,单向离合器F3锁止,固定中排行星架-后  相似文献   

5.
②1挡动力传递路线 D位1挡动力传递路线:D位1挡动力传递路线如图65所示,在D位1挡,输入单向离合器锁止,驱动后排太阳轮;前进挡离合器工作,低速单向离合器锁止,单向固定后排内齿圈/前排行星架,则后排行星架/前排内齿圈同向减速输出,将动力传递给主减速器太阳轮。在D位1挡,输入单向离合器和低速单向离合器锁止是动力传递不可缺少的条件,它们不能逆向传递动力,故在D1挡没有发动机制动。  相似文献   

6.
(1)1挡动力传递路线 ①无发动机制动:1挡动力传递路线如图89所示,1挡时,前进挡离合器接合,前进单向离合器锁止;滑行离合器接合,前进挡离合器和滑行离合器同时驱动后太阳轮,后太阳轮顺时针旋转。  相似文献   

7.
2.2挡动力传递路线2挡动力传递路线如图131所示,为能表达清楚,现将各行星齿轮机构的状态分别说明如下。(1)前行星齿轮机构:制动器B3工作,单向离合器F2锁止,单向固定前排太阳轮;单向离合器F1锁止,单向固定前排行星架,则前排行星齿轮机构整体被单向固定。  相似文献   

8.
<正>(1)驻车锁(区域A)。换挡鼓位置的影响:多片式离合器接合,从而使行星齿轮互锁爪形联轴器被启动,从而锁定了飞轮功能角度-状态图如图149所示。驱动轮通过差速器和等速齿轮组2并通过被锁止的行星齿轮组和锁定的自由轮与变速器壳体互锁。采用机械方式固定车辆以防溜车。  相似文献   

9.
长安福特2.0L蒙迪欧装配的CD4E型自动变速器,是一种前轮驱动用4速电控自动变速器。该自动变速器主要由一个带锁止离合器的四组件变矩器以及行星齿轮组、链条驱动、行星齿轮主减速器、差速器小齿轮和半轴齿轮等组成。其组成结构如图1、图2、图3和图4所示。在CD4E变速器中,换挡正时、换挡油压(管路油压)和变矩器锁止离合器的电磁阀(TCC)等均由动力控制模块(PCM)利用其输入及输出网络来实施电气控制。虽然某些输入信号是共享的,但在PCM内的变速器控制与发动机控制策略各自分离。有些输入来自各传感器(质量空气流量、冷却温度传感器等)用…  相似文献   

10.
<正>(1)拉维娜行星齿轮组:在1挡时,输入轴顺时针旋转,离合器C1结合,连接输入轴与后太阳轮,后太阳轮顺时针旋转,长行星轮逆时针旋转,齿圈有逆时针旋转的趋势,单向离合器F1锁止,防止齿圈逆时针旋转,则行星架顺时针减速旋转(输出)。(2)U/D行星齿轮机构:没有  相似文献   

11.
<正>5.D4=B+D+E当变速器进入4挡,离合器C松开,离合器D开始接合,输入轴不再由离合器C输入给第三排齿圈3以及第四排太阳轮4,而是仅由第二排行星架2常输入;由于第二排行星齿轮机构中,并没有相对固定的部件,那么行星架2的动力将按照以后的关系按照比例送给第二排太阳轮2以及齿圈2;那么由于离合器E接合,那么第三排太阳轮3就等于直接连接到了齿圈3,所以此时第三行星排就是传动比为1的状态,3个部件整体旋转;而又由于离合器D接合,那么第四行星排的行星架4又等于第三行星排的行星架3等于齿圈3,也就等  相似文献   

12.
并联式混合动力汽车模式切换时离合器会介入传动系统,容易引起较明显的冲击感,是影响整车驾驶舒适性的主要因素。为此,提出了基于离合器双模糊和电机转矩协调的模式切换控制策略。首先建立混合动力汽车模式切换过程的动力学模型,以减小离合器滑磨功为目标,对模式切换时的离合器接合过程进行划分;其次,结合混合动力汽车模式切换的基本要求和驾驶意图,制定离合器双模糊控制策略,分别对滑摩阶段的接合时长和转矩同步阶段的压力变化率进行控制;然后以离合器滑磨功和整车冲击度为优化目标,采用二次型最优控制算法对滑摩阶段的接合压力进行优化,从而获取模式切换过程中离合器的最优接合压力轨迹;在此基础上,通过实时计算离合器传递转矩,根据电机转矩响应快的特点,制定电机转矩协调控制策略;最后,基于某混合动力试验样车,在底盘测功机上分别进行缓加速、中等加速和急加速下的模式切换试验,对所提出的控制策略进行验证。试验结果表明:该策略能较好地反映驾驶人驾驶意图,保证离合器的使用寿命,所产生的整车冲击度均处于合理范围之内,改善了整车模式切换过程中的驾驶舒适性。  相似文献   

13.
正(接2018年第3期)双级行星齿轮排:工作状态与三挡时相同。拉维纳行星齿轮排:离合器C1接合,将双级行星齿轮排的内齿圈R1与拉维纳行星齿轮排的小太阳轮S3连接,动力经双级行星齿轮排的内齿圈R1传至拉维纳行星齿轮排的小太阳轮S3;同时,离合器C4工作,将发动机动力由变扭器的涡轮轴直接传至拉维纳行星齿轮排的大太阳轮S2。与三挡时相比,拉维纳行星齿轮排小太阳轮S3转速与三挡时相同,属于减速  相似文献   

14.
A340E型变速器是丰田公司用于后轮驱动车型的4速电液控自动变速器,该变速器采用带锁止离合器的三元件单级液力变矩器和由3个行星排组成的辛普森式行星齿轮机构。该变速器传动冲击小,使用寿命长,但结构较复杂,维修难度较大。  相似文献   

15.
A340E型变速器是丰田公司用于后轮驱动车型的4速电液控自动变速器,该变速器采用带锁止离合器的三元件单级液力变矩器和由3个行星排组成的辛普森式行星齿轮机构.该变速器传动冲击小,使用寿命长,但结构较复杂,维修难度较大.  相似文献   

16.
根据湿式离合器接合过程特点,应用平均雷诺方程和粗糙表面弹性接触模型对湿式离合器接合过程建立了有效数学模型。利用Runge-Kutta方法对模型求解,分别研究了摩擦衬片渗透性、润滑油粘度、接合压力、动静摩擦因数特性等因素对接合过程中转矩响应、粘性转矩峰值、锁止处转矩峰值和接合时间的影响规律,并通过试验验证了模型的正确性和有效性。仿真与试验结果表明:增大摩擦衬片渗透性或接合压力,可以加快转矩响应,缩短接合时间;增大润滑油粘度,可以减慢转矩响应,缩短接合时间;减小摩擦副的动静摩擦因数差值,可以减小锁止处转矩峰值。  相似文献   

17.
<正>3.3挡动力传递路线分析3挡动力传递路线如图160所示,矢量图如图161所示。3挡时,前、后排齿圈被同时驱动,整个行星齿轮机构以一个整体旋转,为直接挡,传动比是1∶1。后排齿圈动力传递路线是:输入轴顺时针旋转,前进挡离合器C1接合→惯性离合器C3接合,同时单向  相似文献   

18.
在传统控制策略的基础上,提出以冲击度、发动机转速和离合器油液温度3个参数来优化接合压力变化率的的CVT离合器控制策略.4种起步工况下的整车试验结果显示,采用所提出的控制策略,缩短了离合器接合时间(平均缩短了0.4s),提高了汽车起步平稳性(冲击度平均降低了1m/s3).  相似文献   

19.
电控机械式自动变速器起步控制   总被引:4,自引:0,他引:4  
系统地分析了离合器接合各阶段的特点及其对起步品质评价指标的影响。以降低起步冲击度和减少离合器滑磨功为原则,提出了离合器接合的控制策略,并阐述了离合器接合量及接合速度的确定方法。采用该控制方法对桑塔纳2000样车进行了试验研究,证明了该方法能有效地提高车辆的起步品质。  相似文献   

20.
(5)锁止控制 锁定控制是由NO.3电磁阀的通、断电来实现。锁定离合器作用的范围依换挡模式、挡位、节气门开度及车速而定。即在锁定作用的范围内,如果遇到自动变速器换挡时或制动作用时,则锁定作用也会停止。锁止离合器的接合条件如表8所示,锁止离合器的工作示意图如图26所示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号