首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于流场分析的管道内腐蚀预测及检测技术   总被引:1,自引:1,他引:0  
油气管道的内腐蚀是油气工业中很难解决问题之一。由于内腐蚀的影响因素众多,常规检测手段的精确度难以达到要求。应用基于流场分析(CFD)的计算机数值仿真技术,对工业管道、含CO2原油输送管道和含水天然气输送管道的流场分布和内腐蚀情况进行模拟,预测管道系统内流速最大位置和腐蚀严重的管段。结合现有的检测技术,针对腐蚀严重区域进行重点检测,可以避免盲目检测,提高检测工作效率。  相似文献   

2.
油气管道内腐蚀检测技术的现状与发展趋势   总被引:2,自引:2,他引:2  
综述了油气管道内腐蚀检测技术的发展现状,介绍了目前较为成熟、应用较为普遍的漏磁检测、超声波检测、涡流检测、射线检测、基于光学原理的无损检测5种内检测技术的原理,并分析了各种技术的优缺点.结合近年来在油气管道内腐蚀检测方面的一些经验,提出了目前管道内腐蚀检测技术存在的问题,并指出了管道内腐蚀检测技术的发展趋势.  相似文献   

3.
高含水油气管道内腐蚀穿孔频发,严重影响生产和环境。因此,油气管道内腐蚀的预测与检测是亟待解决的问题。常规检测耗资大,且效果差,结合美国腐蚀工程师协会内腐蚀直接评价标准和流体数值仿真技术(CFD)预测管道内腐蚀模型并与现场管道高程数据相结合,实现对高含水油气管线积水与易发内腐蚀位置的预测,针对该位置开展管体腐蚀检测,该方法在现场得到成功应用。通过现场检测数据来验证和修正预测模型,为解决高含水油气管道内腐蚀提供一种方法。  相似文献   

4.
针对长输油气管道的内腐蚀问题,总结了国内外油气管道内腐蚀研究现状、内腐蚀主要机理,并从输送介质、管材成分、输送工艺等方面对管道内腐蚀影响因素进行了分析。同时,结合国内外调研情况,介绍了长输油气管道内腐蚀控制标准和主要的防控技术,并对内腐蚀监测和直接评价技术进行了研究。在此基础上,介绍了开展管道内腐蚀研究的重要性及研究方向,为油气管道完整性研究和内腐蚀研究提供参考。  相似文献   

5.
某输油站内原油管道过路埋地段在使用过程中,发生了内腐蚀穿孔泄漏。文中针对该条原油管道内腐蚀泄漏情况,通过使用超声相控阵内腐蚀检测技术对该条管线进行内腐蚀缺陷扫查,并结合管段相对高程和管内原油介质成分分析结果,对该条原油管道内腐蚀穿孔现象进行原因分析。结果表明,该条管道属于典型的静置管道,管内原油含水量大,氯含量较高,油品呈弱酸性,内腐蚀多发生于该条管道局部低洼位置底部6点钟附近,腐蚀失效主要原因为静置管道原油沉积水造成的电化学腐蚀。  相似文献   

6.
湿气管道内腐蚀直接评价方法(WG-ICDA)是独立的内腐蚀评价方法,不依赖智能检测器、水压试验和在线检测。在美国腐蚀工程师协会2010年颁布的"湿性天然气管道内腐蚀直接评价"标准的基础上,阐述了该方法的4个步骤,对影响WG-ICDA的关键因素进行定性分析。建议加强湿气管道内腐蚀直接评价方法的工程实际应用,有利于补充内检测方法,完善管道完整性管理,提高湿气管道内腐蚀的预防和维修水平。  相似文献   

7.
通过对城市天然气管道所面临的腐蚀风险的阐述,并结合国内外油气管道事故的危害,对管道腐蚀检测的必要性进行了说明.文中提出了腐蚀内检测作为管道信息采集的一种方式,将为完整性管理提供科学有效的数据,并为管道的维修维护提供依据,为管道的安全有效运行提供保障.从工程应用的角度,结合实际工作经验,对城市燃气腐蚀内检测过程中的难点进行了分析,同时提出了解决方法,对腐蚀检测技术服务具有现实的指导意义.  相似文献   

8.
国内油田开发后期,原油集输管道含水率高,由内腐蚀导致管体腐蚀穿孔问题凸显,对于高含水原油集输管道,分析其内腐蚀影响因素,预测管体易腐蚀位置,采取有效的检测手段及具体监测方法解决。文中对高含水原油集输管道内腐蚀因素进行分析;建立典型管段模型进行FLUENT多相流模拟,得出水滴在弯头出口外侧及两颊处有沉积,为易腐蚀位置的结论。  相似文献   

9.
长输管道宽频超声内检测器技术   总被引:1,自引:0,他引:1  
利用宽频超声检测技术开展了旋转探头和阵列探头管道超声内检测器 (BUS-Pig)研究,实现了数据处理,管道腐蚀缺陷超声检测B、C扫描图像化和缺陷的三维图像化.实验结果表明:达到了管道腐蚀测厚精度±0.5 mm、腐蚀分辨率10 mm×10 mm的要求,并可检测评价管道截面尺寸.另外,对管道轴向裂纹的超声检测技术也进行了初步研究.  相似文献   

10.
文中基于标准规定和研究成果,论证了气质工况参数、高后果区与风险评价结果等输入数据对长输天然气管道内腐蚀直接评价结果有重要影响;针对丘陵地区某天然气长输管道,用PipePhase软件进行多相流模拟计算开展间接评价预测,并对预测内腐蚀敏感管段进行了直接检测,验证了ICDA的有效性。应用实例分析表明,针对部分长输管道,仅依据临界倾角分析不能确定需直接检测的内腐蚀敏感度点,应进一步开展多相流动分析,为更高效地开展长输天然气管道内腐蚀直接评价提出了建议。  相似文献   

11.
在传统的管道腐蚀检测技术中,一般采用逐点测量管壁厚度的方法检测管道的局部腐蚀,无法实现管道的全面检测,并且无法对占压、跨越、穿越和未开挖等处的地埋管道进行腐蚀检测。目前,导波技术在国内外压力管道腐蚀检测中得到了广泛的应用,在解决了上述问题的同时,此项技术在应用过程遇到了一些技术难题,特别是管道缺陷信号的提取和辨识。文中介绍了管道导波检测的基本原理和导波应用的案例。  相似文献   

12.
埋地管道的腐蚀与防护综述   总被引:6,自引:0,他引:6  
将埋地管道的腐蚀分为内腐蚀和外腐蚀2类,综述了影响埋地管道内腐蚀及外腐蚀的因素,介绍了常用的埋地管道内腐蚀及外腐蚀检测技术,给出了埋地管道内腐蚀及外腐蚀的控制措施.  相似文献   

13.
目前,我国管道漏磁腐蚀检测技术及设备不断得到应用和普及,为管道维护和管道管理提供了科学准确的检测数据。提高检测数据和维护开挖时的定位精度,可使管道腐蚀检测更好地为管道维护、大修服务。通过对管道磁腐蚀检测器在实际生产中的运用,本文简要地分析了影响管道漏腐蚀检测器定位精度的原因,并提出了提高检测器定位精度的方法。  相似文献   

14.
为了在不停输的状态下对原油管道进行腐蚀检测,开发了漏磁管道内检测技术,并成功在多条管线上进行了应用。文中介绍了该检测技术在甬沪宁原油管道上试验过程及结果,并在检测结果中选取了4个腐蚀点进行了开挖检测,验证了检测数据的准确性。通过该次检测,管线全段共发现了缺陷点308处,其中3个缺陷点腐蚀比较严重,需要立即进行维修,该次检测结果为管道的后期维护提供了依据。最后通过对该次检测结果进行分析,确定了影响检测结果精度的因素,为后期检测技术的升级提供了参考。  相似文献   

15.
液体石油管道内腐蚀直接评价方法   总被引:3,自引:1,他引:2  
基于美国腐蚀工程师协会提出的液体石油管道内腐蚀直接评价标准,介绍了适用于该种管道的腐蚀直接评价方法,并阐述了该方法的4个步骤,即预评价、间接检测、详细检查和后评价.运用油水流型预测、管道积水情况分布以及固体夹带与沉降3个方面的模型来确定腐蚀的具体位置和数量,并考虑了破乳、微生物腐蚀和杀菌剂、固体成分以及局部流动条件下对...  相似文献   

16.
管道内检测器是集机械、电子、计算机技术为一体的复杂的检测设备,在对内检测技术分析的基础上,研制了超声管道内检测器功能样机,对内检测器的关键技术,如机械结构、超声检测仪、定位技术、保障技术、信号处理及检测数据分析等进行了分析,提出了设计方案,经试验管道检测证明,腐蚀缺陷检测精度较高,内外定位较准确,应用前景很好.  相似文献   

17.
油气管道的内腐蚀是管道常见的破坏形式,涂抹缓蚀剂可以延缓管道的腐蚀。对利用清管器进行管道缓蚀剂预膜作业的工艺技术进行了总结和介绍,并提供了清管预膜所需的技术指标的计算方法。实践应用表明,利用清管器对管道进行缓蚀剂预膜具有成膜性好、操作简单、在役修复的优点,为管道防腐提供了一种便捷方法。  相似文献   

18.
在用工业压力管道在运行期间存在内腐蚀和外腐蚀等腐蚀缺陷,威胁管道结构的完整性。根据TSG D0001-2009《压力管道安全技术监察规程—工业管道》的要求,应对压力管道进行定期检验,从而发现管道上存在的腐蚀缺陷,减小事故的损失。在对各个无损检测新方法基本原理介绍的基础上,给出了无损检测新方法的关键点解析,最后总结了定期检验中的检验方法,为在用工业压力管道的定期检验提供参考。  相似文献   

19.
多相流管线的内腐蚀直接评价方法   总被引:1,自引:0,他引:1  
主要结合墨西哥的一条使用了该评价技术的多相流管线实例,介绍油、气、水混输的多相流管线内腐蚀直接评价(ICDA)技术,重点介绍了多相流管线ICDA的间接检测阶段。采用多相流瞬态模拟软件(0LGA)结合风险分析技术绘制出基于风险分析的内腐蚀敏感度剖面图,从而确定出管线最容易发生腐蚀的高风险临界位置。  相似文献   

20.
川西气田集输管道投运年限较长,敷设地区大气、土壤腐蚀性较强,造成管道外腐蚀引起的穿孔、泄漏。针对管道外腐蚀问题,通过对川西地区腐蚀环境调研,分析管道外腐蚀特征,并根据气田实际开展了管材、防腐层、阴极保护,修复补强技术及腐蚀检测等腐蚀控制措施研究,形成了川西管道外腐蚀防护体系,有效延长管道平均剩余寿命,保障了气田安全平稳生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号