首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
王志华  张聪  田哲 《船舶工程》2017,39(S1):183-186
论文提出一种基于运行模态分析(OMA)的新的船舶推进轴系状态监测方法。论文以船舶推进轴系试验台为试验对象,获取轴系运行时不同加载工况下的扭振信号,利用基于数据的随机子空间法(DD-SSI)识别扭振的固有频率,并与已知的试验模态分析(EMA)识别的轴系静态时同一加载工况下的结果进行对比,验证运行模态分析识别结果的准确性,并研究不同加载工况下轴系扭振固有频率随加载工况的变化规律。试验结果表明,运行模态分析能够准确识别轴系的扭振固有频率,且扭振固有频率的增量与加载量呈正相关,因而运行模态分析可以用作一种新的船舶推进轴系状态监测方法。  相似文献   

2.
船舶推进轴系是船舶动力装置的重要组成部分,在载荷的作用下,产生扭振。根据轴系扭振的基本原理,分析了船舶推进轴系产生扭振的原因,在此基础之上,分析各个因素对扭振特性的不同影响效果,从而为推进轴系的避振减振提供参考。  相似文献   

3.
本文通过计算分析影响39 000 DWT化学品/成品油船轴系扭振的各种因素,发现调整轴径可以改善轴系扭振和校中状况,并且能够降低轴系材料和制造成本,实现轴系扭振优化设计。  相似文献   

4.
扭振会对船舶柴油机轴系产生较大的不利影响,致使轴系发生故障或者断裂,需要对其进行精准的测试。为了提升柴油机轴系扭振测试的准确性,设计扭振测试程序软件集成开发平台,其硬件包括传感器选型单元、采集卡选型单元与调理电路设计单元,软件包括扭振测试数据处理模块与轴系扭振计算模块。通过上述硬件单元与软件模块的设计,实现了船舶柴油机轴系扭振测试程序软件集成开发平台的运行。实验结果表明,在共振转速27 r/min时,减振器内外圈振幅分别为3.3°与4.4°,与实测数值保持一致,证实设计平台具备可行性。  相似文献   

5.
以某59900 t大型沿海散货船轴系为研究对象,依据船舶轴系扭振基本原理,结合中国船级社规定的中间轴、螺旋桨轴许用应力值,比较分析了推进轴系增加重飞轮、调频轮、扭振减振器,以及改变中间轴直径和材料抗拉强度等不同组合方案下中间轴扭振应力情况,特别考虑主机在恶劣海况下通过转速禁区的功率裕度要求。结果表明:方案5最为理想,既符合船级社要求,又能最大程度地降低船厂建造成本。  相似文献   

6.
船舶推进轴系扭振激光测试技术   总被引:1,自引:0,他引:1  
本文介绍船舶推进轴系扭振的激光测试原理与方法,并将实测数据与轴系扭振电测法测试数据及理论计算数据进行对比分析,得到满意的结果。轴系扭振激光测试不仅测试数据可靠,而且测试简单、安装方便,无需任何附件,适用于各类轴系的扭振测试工作。对于利用其它方法无法测试的轴系显示了不可比拟的优越性。  相似文献   

7.
船舶机械轴系是船舶动力传递、船舶平稳运行的重要组成部分,常规机械轴系受材料、结构的影响较大,在船舶满载排水量超过50万吨时,其抗冲击能力及使用寿命明显下降。为此提出船舶机械轴系抗冲击能力优化。对常规机械轴系主轴类材料进行合金化处理,稳定碳化物,形成性能良好的下贝氏体,提升主轴的核心力学性能;依托高压铸造精密锻造、第二相强化等手段,对机械轴系相关构件进行材料工艺优化,并构建数学结构优化模型,确定各构件的安装退让量,实现船舶机械轴系抗冲击能力优化。试验数据表明,优化后的船舶机械轴系比常规机械轴系冲击吸收功提升49%,使用寿命提高52%。  相似文献   

8.
船舶推进轴系的弯扭振动与支承轴承的润滑油膜相互耦合,互相影响。文中给出了轴承的润滑方程及润滑与弯扭振动耦合的运动方程,通过数值计算,研究了润滑油粘度对轴系振动的影响。从计算的结果可知:在冲击载荷的作用下,弯扭振动响应随粘度增大而减弱,振幅衰减加快,冲击作用对轴系振动干扰时间缩短。同时,润滑粘度愈低,弯扭耦合性愈强,振幅改变愈大,互激励愈明显,而在高粘度条件下,轴系的弯扭耦合性减弱,扭转振动受冲击载荷的影响不明显,而弯曲振动受冲击载荷的影响明显存在。  相似文献   

9.
扭振是影响船舶安全性和舒适性的重要因素,船舶轴系扭振的测量是提高轴系安全性和舒适性设计的重要前提。本文针对以柴油机为主动力的船舶轴系为研究对象,研究了轴系扭振的测量的方法。硬件部分采用测速齿轮、转速传感器和DEWE43V数据采集模块进行瞬时转速的采集;软件部分,在DEWEsoft软件平台的基础上进行二次开发,对瞬时转速进行处理,从而提取扭振信号,实现了船舶轴系扭振的实际测量。  相似文献   

10.
在轴系试验台上,进行采用不同硬度橡胶轴承材料对轴系振动影响的试验研究;试验结果表明,橡胶轴承材料的不同硬度,对轴系振动影响较大,选择合适硬度的橡胶轴承材料可以有效抑制轴系的振动.  相似文献   

11.
[目的]为明确中、高速柴油机与多弹性联轴器匹配的扭振计算方法及推进轴系扭振特性,[方法]以某船MTU柴油机推进轴系为研究对象,分析与之匹配的多弹性联轴器选型方法,建立MTU柴油机推进轴系的扭振计算模型,分析MTU柴油机的激励特性和推进轴系扭振特性,开展MTU柴油机与多弹性联轴器匹配系列轴系的扭振特性预报,并提出基于实测振幅和解析法的阻尼修正推算方法,用以修正轴系扭振特性的预报结果。[结果]研究结果表明:实测共振频率与计算频率吻合;经修正,共振转速处的曲轴应力降低了16%,弹性联轴器的振动扭矩降低了15%,验证了扭振计算方法的正确性。[结论]所得结论可为后续同型舰船的轴系扭振分析提供工程参考。  相似文献   

12.
大型船舶推进轴系扭振特性仿真和试验   总被引:4,自引:4,他引:0  
基于多体动力学耦合理论结合有限元理论,以1艘大型船舶为研究对象,建立其推进轴系的刚柔耦合多体动力学仿真模型,对大型低转速推进轴系在工作中的扭振特性进行研究。在仿真计算的基础上,利用扭振测试系统对实船的扭振进行测量,并从多个谐次将轴系扭振的仿真计算值与试验测量值进行对比和分析。分析结果表明,通过仿真计算得到的轴系扭转振动变化趋势与实际测量值基本相符,验证了仿真模型的正确性和可行性。同时,通过Adams/Virbration模块分析了船体变形对轴系扭振的影响,证明了船体变形会导致轴系扭转振动增大。  相似文献   

13.
船艇轴系扭振状态测试与分析   总被引:3,自引:1,他引:2  
由于船艇轴系扭振产生的原因复杂性,开展轴系扭振的测量技术研究显得非常重要.本文主要综合分析了齿轮加工及其工艺、脉冲发生电路时钟频率、船体振动3个方面对扭振测量精度的影响,系统分析了基于频率计数法的扭振测试系统的测试原理,并进行了相应的实船测试实验.结果表明,该测试方法对于船艇轴系扭振的测试达到与理论分析一致,是一种方便有效的船艇轴系扭振的测试方法.  相似文献   

14.
双层组合外套液压联轴器分析   总被引:5,自引:0,他引:5  
介绍船用轴系液压联轴器的组成,并对液压联轴器双层外套进行了分析,确定了双层外套内、外层之间界面的最佳半径。  相似文献   

15.
船舶推进轴系的弯扭振动与支承轴承的润滑油膜相互耦合,互相影响.文中给出了轴承的润滑方程及润滑与弯扭振动耦合的运动方程,通过数值计算,研究了润滑油粘度对轴系振动的影响.从计算的结果可知:在冲击载荷的作用下,弯扭振动响应随粘度增大而减弱,振幅衰减加快,冲击作用对轴系振动干扰时间缩短.同时,润滑粘度愈低,弯扭耦合性愈强,振幅改变愈大,互激励愈明显,而在高粘度条件下,轴系的弯扭耦合性减弱,扭转振动受冲击载荷的影响不明显,而弯曲振动受冲击载荷的影响明显存在.  相似文献   

16.
橡胶轴承材料硬度对轴系振动影响的试验研究   总被引:1,自引:0,他引:1  
在轴系试验台上,进行采用不同硬度橡胶轴承材料对轴系振动影响的试验研究;试验结果表明,橡胶轴承材料的不同硬度,对轴系振动影响较大,选择合适硬度的橡胶轴承材料可以有效抑制轴系的振动。  相似文献   

17.
扭振是舰船传动系统的关键参数之一,直接表征了轴系运转的稳定性和可靠性,对及时发现并消除轴系故障具有重要意义。随着舰船轴系扭振测试需求逐渐由离线分析向长期在线监测发展,对扭振量值的准确性要求愈来愈高。本文综述了当前扭振测试的方法以及误差消除、信号校正等提高测量精度的方法,指出了当前扭振测量方法与实际需求的差距,并比较了电子式校准和机械式校准两种校准方式的优缺点及适用范围,展望了舰船扭振测量校准的发展方向。  相似文献   

18.
含有皮带驱动附件的船舶柴油机轴系扭振分析   总被引:3,自引:2,他引:1  
按照造船规范,船舶柴油机轴系扭振计算中,皮带驱动部件可不予考虑。在测试中发现,1台含皮带驱动附件的柴油发电机组轴系扭振固有频率测试值多于计算值。在传统计算模型上增加皮带驱动部件后,并根据实际布置形式建立带分支的扭振计算模型,轴系固有频率的计算与测试结果吻合。分析表明:皮带系统对轴系的扭振存在不可忽视的影响,而且若皮带及驱动设备的参数选择不当,可使轴系扭振固有频率在机组额定转速附近,威胁轴系安全运行。  相似文献   

19.
船舶轴系扭转振动检验是检验和判断船舶轴系最重要的方法和手段,主要包括审查轴系扭振计算书和实测报告。本文介绍了轴系扭转振动计算方法及实船测量原理,并研究了扭振计算书和扭振测量报告的审查方法及注意事项,最后给出了一个船舶轴系扭转振动检验实例。  相似文献   

20.
船舶轴系是船舶动力装置的重要组成部分,在工作中一般传递主机功率输出产生的推力及扭应力,还会受到自重和螺旋桨重量及各种振动等产生的弯曲应力和附加应力,因而工作条件极其恶劣,往往容易发生故障。管理好轴系,对船舶的安全航行至关重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号