首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
兰渝铁路毛羽山隧道围岩主要以炭质板岩为主,开挖后初期支护出现较大变形,且变形持续时间长。通过分析,高地应力和软岩是造成大变形的主要原因。施工过程中通过提高初期支护强度、加设长锚杆注浆、预留合理变形量和采用双层初期支护来控制变形。并采用超前小导洞应力释放法和预留空间释放法,以减缓变形速率。对高地应力软岩隧道变形控制技术进行探索,为此类隧道施工提供技术参考。  相似文献   

2.
在隧道新奥法施工中,为保证施工安全及结构的长期稳定性,监控量测工作非常必要。以广河高速公路石鼓隧道为工程背景,对地表沉降、拱顶下沉和水平收敛等进行了跟踪量测,量测结果表明:隧道开挖及初期支护30 d左右,围岩基本上趋于稳定,应按照规范要求及时施作二次衬砌;隧道洞口的地表沉降远小于允许沉降值,说明浅埋段采用双侧壁导坑法开挖是适宜的;同一监测断面的周边收敛、拱顶下沉的监测指标随时间的变化规律基本一致,围岩的变形特征与围岩级别、开挖方式等有着直接关系。研究成果为隧道的现场施工提供了必要的依据,同时也可为分析研究其它同类工程提供参考。  相似文献   

3.
为解决高地应力隧道软岩破碎带大变形的控制问题,以兰渝铁路某隧道为例,分析了软岩破碎带的变形特征,结合前期变形控制的经验,确定软岩破碎带的变形等级,采取保护围岩的施工理念,选择合理的支护参数,加强锁脚锚杆,施作锁固锚杆,使支护结构均匀受力,预留合理变形量并确定工序化注浆和横撑支护加强的时机,短台阶开挖、快速封闭和适时施作衬砌,建立大变形控制流程,有效控制了隧道软岩破碎带大变形.  相似文献   

4.
将锚杆作用力视为体力作用于围岩内, 将初期支护与锚杆锚固范围内的围岩视为围岩加固体, 建立了围岩力学模型, 基于统一强度理论分析了隧道蠕变条件下的围岩应力与变形规律, 推导了复合衬砌应力与变形表达式, 分析了隧道围岩蠕变过程中支护结构受力特点及不同初期支护强度下二次衬砌受力变化规律。分析结果表明: 当初期支护按照“初期支护应与围岩共同受力且能保证施工阶段安全”的原则进行设计时, 在围岩蠕变作用下, 锚杆与喷射混凝土最大受力分别为48、286kPa, 与开挖阶段相比分别增大了57.5%、13.7%, 且超过支护结构最大承载力, 说明在进行初期支护设计时, 仅满足隧道开挖过程中围岩稳定而不考虑蠕变产生的附加应力影响, 可能造成隧道运营过程中初期支护结构破坏, 不利于隧道稳定; 当二次衬砌厚度由300mm增大至500mm时, 二次衬砌最大受力增大了40.5%, 荷载分担比由25.2%增大至36.2%, 而增大初期支护强度后, 二次衬砌受力减小了14.5%, 荷载分担比由25.2%减小至22.3%, 说明二次衬砌荷载随初期支护强度增大而减小, 而随自身强度增大而增大, 应重视初期支护与二次衬砌支护强度的协调配置, 实现围岩压力的合理分配; 在软岩地质条件下, 应保证隧道施工过程中围岩稳定并避免围岩蠕变过程中发生结构破坏, 以实现初期支护与二次衬砌共同承担蠕变引起的附加应力。   相似文献   

5.
以离军高速公路黄土连拱隧道为工程背景,对地表沉降、地质和支护状况、拱顶下沉和水平收敛进行了现场监测,并采用有限元方法分析了隧道围岩拱顶下沉和水平收敛的变化规律,进而研究了黄土连拱隧道三导洞法施工的围岩变形规律和影响因素.结果表明:黄土隧道Ⅳ类围岩比Ⅴ类围岩变形小,围岩稳定较快;三导洞施工法开挖中、左、右导洞和断面开挖时,围岩应力一直处于重新调整中,变形也在不断变化,且施工中开挖顺序对围岩变形有很大影响,在洞室开挖施工中,要密切注意拱腰及拱顶的变形情况,加强Ⅴ类围岩监测,及时进行临时支护,尽早完成右洞初期支护,以防变形过大而围岩失稳;影响黄土隧道围岩变形的主要因素是黄土的工程特性和地质工程环境.  相似文献   

6.
针对川藏线拉萨—林芝段娘盖村隧道开挖与支护施工难、拱部塌落灾害频发等工程技术难题,提出了“三台阶互补循环式开挖+型钢钢架+喷射混凝土+双层密钢网+多组锁脚锚杆(管)+衬砌壁后注浆”的开挖支护组合体系,选取漂卵石隧道2组典型断面开展支护体系受力与变形实测研究,分析了围岩荷载作用特征、支护体系受力特性以及洞内外变形规律,揭示漂卵石隧道新型支护体系承载作用机制,总结提出了相应的防控新原则。分析结果表明:围岩压力以拱部松动塌落荷载为主且沿洞周分布不均,初期支护与二次衬砌平均荷载分担比例分别为67.65%和32.35%;锁脚锚杆受力拉压兼具,优化后最大拉、压力分别减小了45.9%和20.0%;二次衬砌受力总体较小,具有足够的结构安全储备;洞身段拱顶下沉不超过15 mm,水平收敛为8~9 mm;洞口段变形不对称且受浅埋偏压和降雨条件影响显著,拱部最大下沉达52.4 mm,上、下台阶水平收敛分别为11.4和15.6 mm,在类似不利条件下应尽早施作仰拱和二次衬砌以保证施工安全;漂卵石隧道支护体系设计遵循“少扰动、强拱脚、防超挖、密钢网、勤注浆”的防控原则,能够及时控制拱部松动区扩展,调动深层围岩的自...  相似文献   

7.
主要介绍了使用经验法确定隧道Ⅳ级围岩二衬的合理支护时机,通过分析Ⅳ级围岩拱顶下沉、周边收敛、围岩压力、初衬内力时程图,最后得出Ⅳ级围岩二衬合理的支护时间.  相似文献   

8.
为了更好的掌握小径距隧道的变形特点,以某市某小径距隧道为工程背景,采用指数函数、对数函数、双曲线函数三种形式对监测数值进行拟合,分析隧道拱顶及净空位移趋势,得出最优拟合函数,研究结果表明:指数函数U=Ae(-B/T)的相关系数较高,通过指数函数可以很好地预测围岩的变形趋势;围岩的变形主要分为三个阶段,急剧变形阶段,缓和变形阶段,稳定阶段,左洞的拱顶下沉以及净空收敛量均大于右洞,小净距隧道后行洞开挖对先行洞产生了显著的影响,通过对三类典型断面的分析提出二次衬砌的合理支护时机,研究结果可为类似工程提供参考。  相似文献   

9.
富水全风化花岗岩隧道变形规律与力学特性   总被引:1,自引:0,他引:1  
用地质钻机在隧道中心线上方钻取原状土进行土工试验,采用电子水准仪量测地表和拱顶沉降,采用JSS30A数显收敛仪进行隧道水平收敛监测,采用JTM-V2000D型振弦式土压计量测围岩与初期支护间压力、初期支护与二次衬砌间压力,通过对寨子岗隧道围岩变形及压力进行量测,得到了富水全风化花岗岩地区隧道围岩变形规律与力学特性.分析结果表明:深浅埋隧道的划分界限为2倍洞径;隧道洞口段洞顶土体同时存在竖向位移和水平位移;围岩的水平收敛稳定时间及拱顶沉降的稳定时间和隧道埋深关系不大;浅埋隧道的埋深越大,水平收敛值及拱顶沉降值越大,深埋隧道的水平收敛值及拱顶沉降值和隧道埋深关系不大;围岩与初期支护间压力分布比较均匀,浅埋隧道各量测点压力值差异较小,压力随着隧道埋深的增加逐渐增加;深埋隧道各点压力分布的不均匀程度有所增加,各点压力值随着隧道埋深的增加变化很小;围岩与初期支护间压力均大于初期支护与二次衬砌间压力,初期支护与二次衬砌间的最大压力均不大于100 kPa.  相似文献   

10.
依托宝鸡至汉中高速公路连城山隧道(双洞六车道),基于隧道变形和支护结构受力现场测试,分析了大跨度绿泥石片岩隧道大变形灾害特征和机理,总结了隧道大变形灾害综合控制方法,建立了大跨度绿泥石片岩隧道大变形分级标准,提出了各变形级别对应的支护参数。分析结果表明:大跨度绿泥石片岩隧道在开挖过程中以沉降变形为主,主要表现为拱部初期支护的整体沉降;在初期支护闭合后,主要表现为边墙的挤出变形和墙脚下沉引起的仰拱底鼓;大变形灾害主要表现为掌子面失稳垮塌、初期支护变形侵限破坏、锁脚锚管脱焊失效、二次衬砌开裂、边墙下沉以及仰拱回填隆起开裂;绿泥石片岩极其软弱、破碎及仰拱基底遇水软化,是造成隧道大变形灾害的根本原因;隧道开挖跨度大(最大开挖跨度为19.6 m)、断面扁平、拱脚地基承载力不足而缺乏有效约束,加剧了隧道支护变形侵限和失稳破坏;初期支护承载能力有限,围岩荷载不断传递至二次衬砌,是导致二次衬砌开裂的直接原因;围岩变形机制为拱部岩体黏聚力难以克服自重而产生不断向下的滑移和松动机制,以及墙脚和仰拱部位围岩低强度应力比引起的软岩塑性流动机制;通过采用“三台阶留核心土法+大预留+双层HK200b钢架分次支护+大直径锁脚锚管+围岩径向注浆+加深仰拱”的大变形灾害综合控制方法,同时对隧道大变形进行分级管理,有效避免了隧道大变形灾害的发生。   相似文献   

11.
为探明高地应力层状软岩隧道的非对称变形破坏规律及其支护结构的非对称受力特性,结合碳质千枚岩力学特性与变形破坏机制的各向异性特性,对层状软岩隧道围岩的非对称变形破坏特征进行了分析. 在93座典型高地应力层状软岩隧道变形数据的基础上,系统性地分析了隧道拱顶沉降、水平收敛、最大变形量与地应力、岩体抗压强度、隧道埋深之间的关系. 研究结果表明:高地应力层状软岩隧道的变形量与最大地应力、岩体抗压强度、埋深的分布较为离散,在一定地应力、岩体强度或埋深条件下,隧道变形量既存在于高值区间,也存在于低值区间;隧道变形量随地应力的增大、岩体强度的降低、埋深的升高逐渐向高值区间靠拢,高地应力层状软岩隧道大变形是高地应力、软弱围岩、层理弱面耦合作用的结果;基于隧道最大变形量与隧道强度应力比的幂指数变化规律,提出了高地应力层状软岩隧道的大变形预测分级指标.   相似文献   

12.
高星明 《交通标准化》2011,(20):105-109
应用有限元分析软件MIDAS/GTS,采用地层结构法分析了东山公路隧道开挖支护过程中的稳定性问题。分析结果表明,开挖不同断面过程中,围岩内最大主应力集中在钢架脚部,钢架架设时应及时施工锁脚锚杆,必要时可采用小导管注浆等方法对拱架脚部围岩进行加固;从衬砌变形角度分析,变形量最大处为拱顶下沉及底脚位置,施工中应注意对拱顶沉降的监测,逐步开挖核心土,保证施工及结构安全,同时应及时施作基础工程,以控制洞室变形;围岩最不利位置出现在拱顶及仰拱两侧,应是重点加强部位。  相似文献   

13.
为解决炭质泥岩隧道施工变形问题,以其古顶炭质泥岩隧道施工为背景,总结该隧道大变形特征,如地表沉降大、初支变形大、开挖后围岩收敛变形大以及易发生掉块和塌方等特征,分析该隧道大变形的主要原因,包括地质偏压明显、围岩性质差、超前支护不理想和开挖扰动大等原因。针对变形原因,提出炭质泥岩隧道施工大变形控制措施,即合理的支护时间、预留变形量的控制、合理的支护刚度以及步步成环的施工工法等方案措施。实践证明,相关方案有利于控制炭质泥岩隧道施工大变形,对同类工程有重要指导意义。  相似文献   

14.
为研究不同的仰拱施作方法对高地应力软岩隧道稳定性的影响,根据时速为200 km/h的双线铁路隧道的标准设计图建立有限元模型,基于三台阶七步开挖法研究了四种不同的仰拱施作方法.分析了不同仰拱施作方法下隧道的拱顶、边墙及仰拱的变形和应力,进一步讨论了初期支护的安全稳定性.研究结果表明:高地应力软岩隧道三台阶七步开挖法中下台阶核心土带仰拱一次开挖,仰拱先填充碎石土后换填混凝土的施作方法最优,该方法能有效控制围岩变形,建议高地应力软岩隧道施工中采用该法;传统的仰拱施作法因初期支护封闭滞后等问题,围岩变形较大;下台阶核心土带仰拱一次开挖,仰拱中部填充碎石土的施作方法不可行,左、右边墙安全系数小于2,不满足规范要求.  相似文献   

15.
基于前人既有研究成果和日本龟浦隧道围岩变形试验,结合郑西客运专线大断面黄土隧道围岩大变形的工程实践,阐述隧道施工影响下围岩变形动态规律,提出围岩变形控制的技术要点和技术措施,并提出相应的围岩变形控制建议.研究结果表明:隧道开挖后的围岩变形可分为掌子面前方的先行变形、掌子面变形及掌子面后方变形3种形式,且这3种变形是同时发生的.控制开挖工作面失稳、拱顶失稳、拱脚下沉和围岩大变形等是隧道围岩变形控制的要点.开挖过程控制和辅助工法控制是隧道围岩变形控制的重点,其中初期支护及时闭合和合理辅助工法的选取是关键.  相似文献   

16.
偏压隧道一般位于风化破碎岩层、堆积层、冲积层或坡积层等较松软地层,埋深往往较浅,在隧道开挖过程中,洞顶下沉较大,难以形成自然平衡拱.通过研究广珠铁路江门隧道典型断面围岩周边水平位移、拱顶沉降和地表沉降的实测数据,分析了隧道开挖引起围岩变形与破坏特征.分析表明,周边水平收敛和拱顶沉降均为开挖初期变化速率较快,开挖一段时间后变形趋于稳定.  相似文献   

17.
宋秉元 《交通标准化》2014,(15):210-212
在研究锁脚锚杆作用机理的基础上,对软弱国岩隧道采用锁脚锚杆时的支护效果进行分析,应用有限元分析软件MIDAS/GTS进行数值模拟、计算和分析.分析结果表明,合理的锁脚锚杆长度和打入角度不仅能够有效地限制围岩的变形程度,而且有利于发挥支护结构承载能力.经过不断计算,一般土质隧道的锁脚锚杆的适宜长度大约为3~3.5m;锁脚锚杆打入角度为0°时,拱顶下沉量及净空收敛量最少.  相似文献   

18.
以贵州某山岭隧道为例,结合周边收敛、拱顶下沉、地表沉降三者之间量测数值以及无损物探—地质超前预报探测结果,分析隧道在浅埋条件下软弱围岩周边收敛、拱顶下沉、地表沉降数值变化规律以及与地质超前预报探测结果的对照分析,根据测设和探测结果进一步为隧道施工提供合理的施工方案和安全的支护参数。  相似文献   

19.
为了解决大断面软岩隧道的软弱破碎围岩径向位移增速快,开挖后初期支护结构不能尽早发挥作用,极大可能导致围岩失稳、发生安全事故等问题,以新建蒙西—华中煤运通道马湾隧道为依托工程,以优化改进后的三台阶仰拱初支开挖法进行施工,并借助有限元软件建立隧道模型,对三台阶仰拱初支开挖法进行数值模拟分析。最终结果表明:按优化改进后的三台阶仰拱初支开挖法能实现仰拱初支紧跟、隧道初期支护整体尽早封闭成环,做到了开挖、支护工序衔接紧凑;隧道最大竖向变形为33. 2mm,拱顶沉降及周边收敛随开挖步的变化均处于施工安全范围内;拱腰初支最大拉应力为1. 08MPa,拱顶最大压应力为13. 8MPa,均符合施工要求,为大断面软岩隧道施工提供一种更安全的新方案。  相似文献   

20.
高速公路隧道工程洞口段施工技术及施工监测分析   总被引:1,自引:1,他引:0  
以湖南吉首—怀化高速公路南山寨隧道工程为依托,对南山寨隧道洞口段施工特点进行了探讨,并对洞口段的进洞方案进行了设计,分析了南山寨隧道洞口段的施工监测结果,监测结果表明:围岩变形值和变形速率较大,对其监测30 d左右后,围岩变形逐渐稳定下来,而变形主要是由开挖洞口段隧道上台阶所引起,甚至连拱顶沉降在开挖下台阶至量测断面时都超过总沉降的50%,隧道水平收敛值经历了"急剧变化—波动—基本稳定"的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号