首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
针对单一广义预测控制器在控制过程中只修改模型参数而不修改控制器参数,导致列车在启动和制动阶段控制效果较差这一问题,采用双自适应广义预测控制方法,设计高速列车双自适应广义预测控制器实现对高速列车运行过程的自动控制。该控制器采用具有可变遗忘因子的递推最小二乘法实时辨识列车运行过程模型的参数,根据辨识得到的模型参数自适应建模且修正控制器的调优参数,进而计算出高速列车需要施加的牵引/制动力,并设计确保控制器稳定的监督机制,实现高速列车对给定速度的高精度跟踪。仿真结果表明:双自适应广义预测控制器对给定速度和位移均有高精度的跟踪能力,在遇到未知干扰时仍能确保列车安全、稳定地运行,其控制效果明显优于单一自适应控制器。  相似文献   

2.
针对城市轨道交通列车电空制动系统控制过程中外界干扰、执行机构时滞、基本阻力不确定等特性造成ATO(列车自动运行)系统速度跟踪及停车不准问题,根据李雅普诺夫稳定性理论提出一种基于SMARC(滑模自适应鲁棒控制)的城市轨道交通列车电空制动控制策略,设计城市轨道交通列车ATO系统基于SMARC的制动控制器。通过鲁棒控制将系统模型中非线性、输入时滞和外界扰动等所有不确定量减小到最小范围,同时也削弱了滑模控制器的抖振现象,增强了控制器的鲁棒性;进一步采用滑模控制减小列车制动过程中速度跟踪误差和减速度误差,从而获得较高的停车精度。仿真结果表明,基于SMARC的制动控制器的控制能完全满足城市轨道交通列车制动要求。  相似文献   

3.
动车组列车制动系统是列车自动驾驶系统ATO的关键环节。针对动车组列车制动系统模型存在较大误差导致的列车在制动阶段控制效果较差这一问题,提出将动车组列车制动模型分为静态子系统和动态子系统两部分,根据列车制动系统的性能和要求,设计了CPSO(混沌粒子群算法)优化GPC广义预测控制器。该控制器由CPSO辨识动态子系统纯延时环节和外界干扰造成的GPC模型误差,并计算动车组列车所需的控制量。以CRH2型动车组为仿真对象,从仿真结果看出,CPSO-GPC控制器在遇到未知干扰时能够满足动车组列车对给定速度和位移的高精度跟踪要求。  相似文献   

4.
针对普通广义预测控制器在列车控制过程中不能修改控制器参数,以至列车运行中遇到未知干扰时影响控制精度和稳定性。本文采用基于控制器匹配的广义预测控制调优方法,以达到经过调优的GPC与H!输出反馈控制器(最优控制器)具有相同的控制效果,并获取GPC调优参数,实现高速列车速度跟踪运行过程的自动控制。该控制器通过最优控制器控制律的函数获得GPC增益,使GPC与最优控制器匹配;在获得GPC增益的基础上,将目标函数转化为凸优化问题,求得GPC的调优参数;GPC自适应建模参数与H!控制器模型匹配,避免模型参数失配,保证控制器模型的稳定性。仿真实验结果表明GPC和H!控制器能够较好地匹配,且基于控制器匹配的高速列车广义预测控制系统具有较好的速度和位移跟踪性能。  相似文献   

5.
针对中速磁悬浮列车运行控制系统的高控制精度与高鲁棒性要求,提出一种基于分数阶PID的运行控制方法.首先,根据中速磁悬浮列车运行数据,利用粒子群优化-模拟退火算法辨识列车空气阻力系数,提高列车动力学模型精度.然后,设计分数阶PID速度控制器,跟踪列车目标速度曲线,降低各类运行阻力对列车运行过程的影响.最后,基于试验线数据...  相似文献   

6.
针对高速列车自动驾驶系统精确进站停车问题,基于列车动力学模型和列车制动系统模型,设计1种自适应模糊滑模控制器,通过模糊切换以补偿列车运行过程中受到的基本阻力、线路附加阻力以及外部未知随机扰动等非线性扰动的影响。根据滑模控制理论,利用列车运行过程中的状态偏差,设计基于跟踪误差的等效控制器,以求解列车制动等效控制量;考虑外部扰动,基于优秀司机驾驶经验的模糊推理规则,设计切换控制器,以得到精确控制量。采用本文控制算法对列车制动过程进行仿真验证,并与传统的PID控制和基于指数趋近律的滑模控制进行对比。结果表明:在考虑附加阻力和外部扰动情况下,自适应模糊滑模控制器能够柔化非线性切换控制信号,削弱滑模控制固有的抖振现象,实现对参考轨迹的精确跟踪,并最终实现精确停车;即使在列车制动系统实际控制输出出现偏差时,设计的控制器仍能控制列车精确跟踪参考制动曲线。  相似文献   

7.
针对高速磁浮列车涡流制动的特点,采用了跟踪理想制动曲线的控制策略,并利用模糊控制理论设计了涡流制动等级控制器,通过对紧急制动过程中列车位置的闭环控制,实现列车准确停靠目标停车区.最后在simulink中对制动过程进行了仿真试验,结果表明上述控制策略和控制器具有较强的鲁棒性,达到了预期目的.  相似文献   

8.
列车运行过程是一个典型的非线性过程,并且随着列车速度的增加,非线性特性越来越强,这就给自动驾驶系统的设计提出更高的要求。本文针对高速列车自动驾驶系统设计多模型广义预测控制器。首先针对高速列车的非线性特性,利用聚类有效性评价指标确定最优的多模型个数,然后采用减法聚类方法建立多模型集合。接着针对每个聚类集合,利用递推最小二乘方法建立相应的线性模型。最后针对模型参数不确定性和未建模部分,设计多模型广义预测控制器进行控制。仿真结果证明了该方法的有效性。  相似文献   

9.
为实现重载列车单次行程的高鲁棒高精度轨迹跟踪,根据列车纵向运动特性,构建重载列车多质点的动力学模型;基于利用批次化的运行过程积累控制经验,结合迭代学习和模型预测控制方法设计1种增强抗扰的重载列车跟踪控制器,将重载列车动力学模型转化为基于模型预测控制框架下的线性二次型最优控制模型,用二次型最优控制的速度和位置状态反馈增益表示迭代学习增益,利用批次化积累的控制经验不断提高跟踪性能,实现单次行程的滚动时域优化,提升轨迹跟踪的鲁棒性和精度;对某货运专线上的2万t重载列车进行跟踪控制仿真,分别从时域稳定性和迭代收敛性验证该控制器的稳定性。结果表明:结合迭代学习和模型预测控制方法能够很好地利用重载列车系统操纵重复性特征并实现全程跟踪控制,较传统控制方法跟踪效果更好并能有效降低列车纵向冲动,同时能够动态响应非重复性扰动,满足重载列车运行控制要求。  相似文献   

10.
列车速度控制是轨道交通发展领域的重要基础问题。面向真实列车速度控制应用场景的列车动力学模型及其控制器设计更具挑战性。一方面,传统基于反馈的无模型控制策略存在收敛速度慢、参数要求高、环境变化敏感等问题,目前难以从优化角度设计控制器且应对复杂系统的约束。另一方面,传统的列车单质点动力学模型很难解决高速列车运行过程中的非线性特性。针对上述瓶颈,首先对列车各节车厢进行受力分析,且考虑车厢间的安全距离,将相对位置和相对速度作为可变状态构建列车多质点模型。然后采用模型预测控制策略,综合考虑列车速度控制的非线性成本函数,处理列车运行过程中的复杂约束,预测控制系统的未来动态行为。然后,针对列车预测控制中的复杂动态约束非线性优化问题,设计对数障碍函数处理不等式约束,进而从拟牛顿法角度设计一种具有稳定收敛性的基于BFGS方法的列车速度预测控制算法,完成列车速度的精准跟踪控制。最后,以国内某线站间列车运行数据为例,与其他先进控制方法进行对比实验,以验证所提出的BFGS列车速度预测控制算法的优越性能。实验结果表明,本文所设计的基于BFGS方法的列车速度预测控制算法能够有效地减小列车速度跟踪误差和位移误差,提升...  相似文献   

11.
针对1.5千米中低速磁浮试验线上轨道台阶引发列车激烈振动的现象,建立磁浮列车单模块的两点悬浮控制模型,运用状态反馈控制算法,对磁浮列车以不同速度经过不同轨道台阶时的轨道状态、悬浮状态和悬浮特性进行比较分析,仿真结果与试验现象吻合,从而验证了该模型的准确性。  相似文献   

12.
中低速磁浮列车因其具有的悬浮特性,制动方式与一般城市轨道交通车辆有所差异。通过对中低速磁浮列车的制动控制原理、制动力管理和基础制动方式进行分析,验证了中低速磁浮列车制动的安全性和可靠性。可为中低速磁浮列车的设计及工程建设提供参考。  相似文献   

13.
针对现有列车自动驾驶速度追踪精度不高的问题,提出一种基于混合系统神经网络反馈补偿控制的模型预测控制算法。根据混合系统建模的特点与优势,引入辅助变量,建立混合系统列车运行动力学模型。为了便于求解包含约束的预测控制律,采用二次规划方法求出满足列车各项性能指标的控制作用序列。神经网络反馈控制器用于对系统目标速度与实际速度之间的误差进行在线学习并求出一个补偿控制量,并将补偿后的控制力作用于列车系统模型。研究结果表明:该控制结构包含补偿控制策略,可以较大程度减小系统跟踪误差,保留模型预测控制的优势,同时提高系统的控制精度。  相似文献   

14.
城市轨道交通运力需求的快速增长,使得地铁列车的行车间隔不断缩小,准点要求越来越高,这对列车运行控制算法的精度和鲁棒性提出了更高要求。本文将分数阶PID控制器引入地铁列车的速度控制,并进行优化研究。建立地铁列车的运动模型,该模型参考牵引制动特性,采用遗传算法修正列车基本阻力系数。基于该模型将分数阶PID控制算法应用于ATO系统的速度控制中。仿真对比分数阶PID控制算法与传统PID控制算法,采用现场数据对建立的模型和算法进行检验。研究结果表明新模型能够更加准确地描述列车的运动特性,当分数阶PID控制算法应用于调速控制后,可以使列车实现更优的速度控制和稳定性。  相似文献   

15.
在对高速列车速度控制的研究中,传统的单质点列车模型因未考虑车长及车间影响力,导致列车在经过特殊线路时速度会跳变,造成较大的速度控制误差。针对上述问题,在列车建模时考虑列车长度以及对每节车厢的受力进行深入地分析,在此基础上建立高速列车的多质点模型,并对其设计相应的模糊预测控制器进行列车速度跟踪控制研究。研究结果表明:对列车建立的多质点模型,能有效地解决列车在经过变坡点和变曲率点时产生的速度跳变问题,减小速度控制误差,且针对该列车模型设计的模糊预测控制器能很好的控制列车跟踪理想速度曲线运行,提高列车速度控制精度和舒适度。  相似文献   

16.
为保证列车高效率运行,需要对自动驾驶系统进行高效设计。列车运行过程具有高度非线性化的特性,针对这一特性,通过引入整数变量,建立基于混合系统的列车混合逻辑动态模型,其次考虑列车运行过程的多重约束,通过二次规划求解控制律。同时为了降低控制器计算量,在模型预测控制的基础上引入了阶梯式控制策略。最后利用Matlab仿真软件使其跟踪一条即定曲线,对所提的控制策略进行数值仿真。结果表明,该控制器可以在降低计算量的基础上,保证列车准时高效跟踪既定曲线,当改变控制器参数时,对跟踪效果有较大的影响。仿真结果对本文采用的方法进行了有效验证。  相似文献   

17.
针对传统列车固定模型难以描述和控制具有时变、非线性等特征的高速列车运行过程问题,本文提出时变遗忘因子的高速列车自适应子空间预测控制方法。首先基于列车状态空间模型描述构建列车的增量式子空间预报模型;接着融合子空间辨识与反馈校正的思想得到时变遗忘因子的列车自适应模型,进而分析高速列车自适应子空间预测控制器的设计方法,并给出相应的控制算法。最后进行高速列车运行过程控制的仿真对比实验,结果表明本文控制方法在高速列车正常运行及强干扰情况下的预测跟踪控制性能是有效的。  相似文献   

18.
车辆动力学模型是列车在运行过程中的一种数学状态模型,通过分析列车运行状态、测速定位误差、空转/打滑、牵引/制动特性及操作滞后延时等影响因素,根据不同的控制目标建立分步迭代计算、车辆传递函数和受控自回归滑动平均3种车辆动力学模型.同时为了提高列车控制性能,对ATO系统中的一些时变关键参数进行分析和校正补偿.最后通过传递函数模型对PID (Proportion Integration Differentiation)速度控制器的控制参数进行理论整定的应用,说明车辆动力学模型为ATO控制算法提供被控对象的数学理论基础具有重要价值.  相似文献   

19.
中低速磁浮列车是磁浮交通系统的关键装备,由于脱离了轮轨接触,其牵引方式也与传统列车差别巨大.以3节编组中低速磁浮列车为例,对该列车的运行阻力、牵引力、电制动力进行了计算分析,根据计算结果对列车的牵引和电制动性能进行了评价,并完成了列车的故障运行能力校核.  相似文献   

20.
为研究中低速磁浮列车制动闸片在极端工况下的温升表现,文章对列车制动过程中与制动闸片热容量相关的物理参数进行了系统的阐述,并基于有限元数值模拟的方法进行瞬态温度场仿真分析,得到了全线路常用制动和紧急制动工况下的制动闸片温升性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号