首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the natural hazards that threaten transportation infrastructure, flooding represents a major hazard to highways as it challenges their design, operation, efficiency and safety. In extreme cases, it may lead to massive obstruction of traffic and direct damages to the road structures themselves and indirect damages to the economic activity and development of the region. To enable the prevention of such consequences, and the proposition of adaptive measures for existing infrastructure, this paper presents an integrated framework to identify the most vulnerable points to flooding along a highway. This is done through the combination of remote sensing information (e.g. LiDAR based Digital Elevation Model, satellite imagery), a high-quality dataset, and a quasi-2D hydrodynamic model. The forcing condition is defined using a hyetograph associated to a storm with duration of 1 day and return period of 100 years. The selected highway is located in the Mexican state of Tabasco, where extreme precipitation events and floods are frequent. Results demonstrate the ability of the methodology to identify critical water levels along the road (h > 1.50 m) at those locations where flooding has been experienced, as well as points of inspection for the highway drainage. These locations were visited in the field and maintenance problems were detected that do increase its level of exposure. We show that this framework is useful for the generation of a flood management strategy to the analyzed highway, which includes an optimum location of adaptive measures to an anticipated more intense future climate.  相似文献   

2.
We use questionnaires to estimate the mortality of mammals on the roads in the Czech Republic and estimate the costs involved. Annual mortality was quantified for eleven species/groups of mammals, and the highest mortality was recorded for common species such as Lupus europaeus and Capreolus capreolus. The vehicle damage is most frequent after collisions with ungulates, which also impose the highest vehicle repair costs. If the animal loss were compensated by releasing animals into the wild, the highest costs would be associated with the release of C. capreolus and L. europaeus. Overall annual compensation costs would exceed €100 million.  相似文献   

3.
Wildlife incidents with aircraft are of concern in the United States as they pose a risk to human safety and economic losses for the aviation industry. Most previous research on wildlife-aircraft incidents has emphasized birds, bats, and ungulates. We queried the Federal Aviation Administration’s National Wildlife Strike Database from 1990 to 2012 to characterize carnivore incidents with U.S. civil aircraft. We found 1016 carnivore incidents with aircraft representing at least 16 species, with coyotes (n = 404) being the species most frequently struck. California and Texas had the most reported incidents and incidents were most likely to occur at night from August to November. Overall estimated damage to aircraft was US$ 7 million. Coinciding with the increase in air traffic, the rate of carnivore-aircraft incidents increased 13.1% annually from 1990 to 2012 whereas the rate of damaging incidents remained fairly constant. Due to the increase in carnivore-aircraft incidents from 1990 to 2012, we recommend further research on techniques to increase detection of carnivores and implementation and scheduled maintenance of perimeter high fences for exclusion. Additionally, we recommend increasing patrol of runways, especially during peak incident periods (July–November) and at night (2000–0600 h).  相似文献   

4.
Prior research on ultrafine particles (UFP) emphasizes that concentrations are especially high on-highway, and that time on highways contribute disproportionately to total daily exposures. This study estimates individual and population exposure to ultra-fine particles in the Minneapolis – St. Paul (Twin Cities) metropolitan area, Minnesota. Our approach combines a real-time model of on-highway size-resolved UFP concentrations (32 bins, 5.5–600 nm); individual travel patterns, derived from GPS travel trajectories collected in 144 individual vehicles (123 h at locations with UFP estimates among 624 vehicle-hours of travel); and, loop-detector data, indicating real-time traffic conditions throughout the study area. The results provide size-resolved spatial and temporal patterns of exposure to UFP among freeway users. On-highway exposures demonstrate significant variability among users, with highest concentrations during commuting peaks and near highway interchanges. Findings from this paper could inform future epidemiological studies in on-road exposure to UFP by linking personal exposures to traffic conditions.  相似文献   

5.
In this study, real-time monitoring campaigns were conducted in two tunnels (Line A and Line B) at a subway station in Shanghai, including temperature, relative humidity, PM1, PM2.5 and PM10, in order to understand the climate and PM characteristics in the transportation microenvironment. In addition, collected floor dust particles in the tunnel were analyzed by ICP for their metal elemental composition. Strong correlations occurred between all PM levels and meteorological parameters in the tunnel of Line A (with platform screen doors), in comparison with the weak correlations between such parameters in the tunnel of Line B (without platform screen doors). PM2.5 and PM10 between peak hours and off-peak hours for both lines presented significant differences (p < 0.05), respectively. Nevertheless, PM1 showed a different pattern, with p > 0.05 for Line A and p < 0.05 for Line B, respectively. In addition, statistical results concluded that PM had an evident weekly variation for both lines. Friday was the highest day of all particulate matters in monitoring periods for both lines. Ratios of PM1/PM10 and PM2.5/PM10 were high when trains were out of service and low when trains were in service. Relative abundance of metal elements detected from floor dust particles proved that floor dust particles in tunnels might be a major source of airborne PM in the subway microenvironments, with Fe as the most abundant metal element, followed by Ca, Al, Mg, Mn, Zn, Cu, Cr, Ni, Pb and Hg.  相似文献   

6.
In recent years, several studies show that people who live, work or attend school near the main roadways have an increased incidence and severity of health problems that may be related with traffic emissions of air pollutants. The concentrations of near-road atmospheric pollutants vary depending on traffic patterns, environmental conditions, topography and the presence of roadside structures. In this study, the vertical and horizontal variation of nitrogen dioxide (NO2) and benzene (C6H6) concentration along a major city ring motorway were analysed. The main goal of this study is to try to establish a distance from this urban motorway considered “safe” concerning the air pollutants human heath limit values and to study the influence of the different forcing factors of the near road air pollutants transport and dispersion. Statistic significant differences (p = 0.001, Kruskal–Wallis test) were observed between sub-domains for NO2 representing different conditions of traffic emission and pollutants dispersion, but not for C6H6 (p = 0.335). Results also suggest significant lower concentrations recorded at 100 m away from roadway than at the roadside for all campaigns (p < 0.016 (NO2) and p < 0.036 (C6H6), Mann–Whitney test). In order to have a “safe” life in homes located near motorways, the outdoor concentrations of NO2 must not exceed 44–60.0 μg m−3 and C6H6 must not exceed 1.4–3.3 μg m−3. However, at 100 m away from roadway, 81.8% of NO2 receptors exceed the annual limit value of human health protection (40 μg m−3) and at the roadside this value goes up to 95.5%. These findings suggest that the safe distance to an urban motorway roadside should be more at least 100 m. This distance should be further studied before being used as a reference to develop articulated urban mobility and planning policies.  相似文献   

7.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

8.
This paper presents the characterization of air quality monitored at near field region (NFR) and far field region (FFR) of a national highway located at an industrial complex. The pollutants such as PM10, SO2 and NO2 were monitored in two campaigns (11th September to 18th October 2012 and 18th January to 17th February 2013). The 24 h average PM10 concentration at NFR and FFR were found to be 86.69 ± 18.56 μg/m3; 73.16 ± 16.21 μg/m3 and 89.44 ± 18.69 μg/m3; 81.91 ± 16.42 μg/m3, respectively during first and second campaign. In both the campaigns PM10, SO2 and NO2 concentration at NFR was higher than FFR. The chemical characterization of PM10 at NFR and FFR indicated the abundance of major elements such as Na (NFR = 30% and FFR = 32%), Ca (NFR = 12% and FFR = 14%) and ions namely NO3 (NFR = 71% and FFR = 68%) and NH3+ (NFR = 15% and FFR = 19%). Further, at FFR, SO42 and NO3 were found to be 18% and 35% higher than NFR indicating the conversions of SO2 and NO2 concentration into secondary particles. The measured SO2 and NO2 concentrations were 23 and 21% lower at FFR when compared to NFR confirms the secondary formation.The CALPUFF, EPA regulatory model was set up to understand the dynamics of air pollutants at the industrial complex. The predicted PM10, SO2 and NO2 concentrations at NFR and FFR were found to be 32.31 ± 1.56 μg/m3 and 31.35 ± 1.27 μg/m3; 0.37 ± 0.21 μg/m3 and 0.06 ± 0.04 μg/m3; 12.83 ± 6.55 μg/m3 and 4.67 ± 2.77 μg/m3, respectively. The model showed moderate predictions for PM10 (R2 = 0.44–0.52), SO2 (R2 = 0.41–0.51) and NO2 (R2 = 0.45–0.61) concentrations.  相似文献   

9.
A before and after hedonic model is used to determine the property value impacts on properties already served by the transit system caused by extensions to Bogotá’s bus rapid transit system. Asking prices of residential properties belonging to an intervention area (N = 1407 before, 1570 after) or a control area (N = 267 before, 732 after) and offered for sale between 2001 and 2006 are used to determine capitalization of the enhanced regional access provided by the extension. Properties offered during the year the extension was inaugurated and in subsequent years have asking prices that are between 13% and 14% higher than prices for properties in the control area, after adjusting for structural, neighborhood and regional accessibility characteristics of each property. Furthermore, the appreciation is similar for properties within 500 m and properties between 500 m and 1 km of the BRT.  相似文献   

10.
Detailed NOx, SO2 and PM2.5 emissions have been estimated for cruise ships in the five busiest Greek ports (i.e. Piraeus, Santorini, Mykonos, Corfu and Katakolo) for year 2013. The emissions were analyzed in terms of gas species, seasonality and activity. The total in-port inventory of cruise shipping accounted to 2742.7 tons: with NOx being dominant (1887.5 tons), followed by SO2 and PM2.5 (760.9 and 94.3 tons respectively). Emissions during hotelling corresponded to 88.5% of total and have significantly outweighed those produced during ships’ maneuvering activities (11.5% of total). Seasonality was found to play a major role, as summer emissions and associated impacts were significantly augmented. The anticipated health impacts of ship emissions can reach to €24.3 million or to €5.3 per passenger proving the necessity of control of the emissions produced by cruise ships in port cities or policy and measures towards a more efficient cruise industry.  相似文献   

11.
This study investigates how highway nuisances are traded off against accessibility gains and other residential characteristics in the moving intentions of people living near highways. It studies a potential mediating role for residential satisfaction and potential mitigating relationships with highway nuisance perceptions. Structural Equation Modelling was used to test a proposed framework based on survey data collected from 1220 respondents living within 1000 m from a highway in the Netherlands.The results show that higher levels of perceived highway nuisances are associated with increased intentions to move, mediated by lower residential satisfaction. However, better perceived accessibility was not associated with either lower moving intentions or lower highway nuisance perception. Highway usage/interest and other residential characteristics – such as satisfaction with buildings, traffic safety, and amount of greenery – seem to countervail perceived highway nuisances as they reduce moving intentions and reduce highway nuisance perception. Finally, the results show that some groups – for example home owners – were less inclined to move (direct effect), independently of their residential satisfaction.From a practical perspective, a more inclusive perspective on highway planning, which accounts for accessibility and other residential characteristics as potential compensators and mitigators for highway nuisances, would be effective to reduce residential stress which could prevent protest and consequent cost overruns of projects.  相似文献   

12.
The transportation system is one of the main sectors with significant climate impact. In the U.S. it is the second main emitter of carbon dioxide. Its impact in terms of emission of carbon dioxide is well recognized. But a number of aerosol species have a non-negligible impact. The radiative forcing due to these species needs to be quantified. A radiative transfer code is used. Remote sensing data is retrieved to characterize different regions. The radiative forcing efficiency for black carbon are 396 ± 200 W/m2/AOD for the ground mode and 531 ± 190 W/m2/AOD for the air transportation, under clear sky conditions. The radiative forcing due to contrail is 0.14 ± 0.06 W/m2 per percent coverage. Based on the forcing from the different species emitted by each mode of transportation, policies may be envisioned. These policies may affect demand and emissions of different modes of transportation. Demand and fleet models are used to quantify these interdependencies. Depending on the fuel price of each mode, mode shifts and overall demand reduction occur, and more fuel efficient vehicles are introduced in the fleet at a faster rate. With the introduction of more fuel efficient vehicles, the effect of fuel price on demand is attenuated. An increase in fuel price of 50 cents per gallon, scaled based on the radiative forcing of each mode, results in up to 5% reduction in emissions and 6% reduction in radiative forcing. With technologies, significant reduction in climate impact may be achieved.  相似文献   

13.
Cities are complex systems, where related Human activities are increasingly difficult to explore within. In order to understand urban processes and to gain deeper knowledge about cities, the potential of location-based social networks like Twitter could be used a promising example to explore latent relationships of underlying mobility patterns. In this paper, we therefore present an approach using a geographic self-organizing map (Geo-SOM) to uncover and compare previously unseen patterns from social media and authoritative data. The results, which we validated with Live Traffic Disruption (TIMS) feeds from Transport for London, show that the observed geospatial and temporal patterns between special events (r = 0.73), traffic incidents (r = 0.59) and hazard disruptions (r = 0.41) from TIMS, are strongly correlated with traffic-related, georeferenced tweets. Hence, we conclude that tweets can be used as a proxy indicator to detect collective mobility events and may help to provide stakeholders and decision makers with complementary information on complex mobility processes.  相似文献   

14.
The rapid development of road infrastructure is inevitable with increasing world human population and rise in the number of vehicles on the roads is going to be an increasing threat to native habitat of many wildlife populations around the world. The present work examines the edge effect of high traffic roads on nest site selection of birds in Udaipur city, Rajasthan (India). A total of 112 nesting site of 14 bird species (among six guilds), was recorded during the study. All six guilds (i.e., carnivore, omnivore, granivore, nectivore, frugivore and insectivore) were sharing similar kind of habitat with fine scale differences (P < 0.0001). The PCA revealed that trees with suitable GBH, canopy and height were supporting birds’ nesting diversity, but the buildings were supporting the highest number of nesting. Different guilds showed different preference to different variables. Spatial heterogeneity, less predation, optimal feeding ground and higher number of advertising and display boards of shops at roadside buildings might be crucial factors for birds’ nesting in this highly disturbed area.  相似文献   

15.
This study analyzes pedestrian receptivity toward fully autonomous vehicles (FAVs) by developing and validating a pedestrian receptivity questionnaire for FAVs (PRQF). The questionnaire included sixteen survey items based on attitude, social norms, trust, compatibility, and system effectiveness. 482 Participants from the United States (273 males and 209 females, age range: 18–71 years) responded to an online survey. A principal component analysis determined three subscales describing pedestrians’ receptivity toward FAVs: safety, interaction, and compatibility. This factor structure was verified by a confirmatory factor analysis and reliability of each subscale was confirmed (0.7 < Cronbach’s alpha < 0.9). Regression analyses investigated associations with scenario-based responses to the three PRQF subscale scores. Pedestrians’ intention to cross the road in front of FAVs was significantly predicted by both safety and interaction scores, but not by the compatibility score. Accepting FAVs in the existing traffic system was predicted by all three subscale scores. Demographic influence on the receptivity revealed that males and younger respondents were more receptive toward FAVs. Similarly, those from urban areas and people with higher personal innovativeness showed higher receptivity. Finally, a significant effect of pedestrian behavior (as measured by the pedestrian behavior questionnaire) on receptivity is explored. People who show positive behavior believed that the addition of FAVs will improve overall traffic safety. Those who show higher violation, lapse and aggression scores, were found to feel more confident about crossing the road in front of a FAV. This questionnaire can be a potential research tool for designing and improving FAVs for road-users outside the vehicles.  相似文献   

16.
17.
Driver sleepiness contributes to a considerable proportion of road accidents, and a fit-for-duty test able to measure a driver’s sleepiness level might improve traffic safety. The aim of this study was to develop a fit-for-duty test based on eye movement measurements and on the sleep/wake predictor model (SWP, which predicts the sleepiness level) and evaluate the ability to predict severe sleepiness during real road driving. Twenty-four drivers participated in an experimental study which took place partly in the laboratory, where the fit-for-duty data were acquired, and partly on the road, where the drivers sleepiness was assessed. A series of four measurements were conducted over a 24-h period during different stages of sleepiness. Two separate analyses were performed; a variance analysis and a feature selection followed by classification analysis. In the first analysis it was found that the SWP and several eye movement features involving anti-saccades, pro-saccades, smooth pursuit, pupillometry and fixation stability varied significantly with different stages of sleep deprivation. In the second analysis, a feature set was determined based on floating forward selection. The correlation coefficient between a linear combination of the acquired features and subjective sleepiness (Karolinska sleepiness scale, KSS) was found to be R = 0.73 and the correct classification rate of drivers who reached high levels of sleepiness (KSS  8) in the subsequent driving session was 82.4% (sensitivity = 80.0%, specificity = 84.2% and AUC = 0.86). Future improvements of a fit-for-duty test should focus on how to account for individual differences and situational/contextual factors in the test, and whether it is possible to maintain high sensitive/specificity with a shorter test that can be used in a real-life environment, e.g. on professional drivers.  相似文献   

18.
Vehicle-related countermeasures to sustain driver’s alertness might improve traffic safety. The purpose of this study was to investigate the effects of somatosensory 20 Hz mechanical vibration, applied to driver’s right heel during prolonged, simulated, monotonous driving, on their cardiovascular hemodynamic behavior. In 12 healthy young male volunteers, during 90-min periods of simulated monotonous driving, we compared cardiovascular variables during application of 20 Hz mechanical vibration with 1.5 Hz as a control and with no vibration. The parameters recorded were indices of key cardiovascular hemodynamic phenomena, i.e., blood pressure as an indicator of stress, cardiac output, and total peripheral-vascular resistance. The principle results were that all conditions increased the mean blood pressure, and elicited a vascular-dominant reaction pattern typically observed in monotonous driving tasks. However, mean blood pressure and total peripheral-vascular resistance during the monotonous task were significantly decreased in those receiving the 20 Hz vibration as compared with 1.5 Hz and with no vibration. The observed differences indicate the cardiovascular system being more relieved from monotonous driving stress with the 20 Hz vibration. The major conclusion is that applying 20 Hz mechanical vibration to the right heel during long-distance driving in non-sleepy drivers could facilitate more physiologically appropriate status for vehicle operation and could be a potential vehicular countermeasure technology.  相似文献   

19.
The Qinghai-Tibet highway and railway cross desolate habitat at elevations of over 4600 m. We assess specie richness and abundance of ground-dwelling birds using strip transects located at a variety of altitudes perpendicular to this transportation corridor. Bird richness, bird abundance, and abundance of rufous-necked snowfinch, were higher adjacent to the roadway than further way.  相似文献   

20.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号