首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
常泰长江大桥为主跨1 176 m的双塔双索面公铁两用双层斜拉桥。为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WTTBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应。结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增大,竖向位移受风速影响较小,车辆响应随风速增大而增大;桥梁主跨跨中横向位移和加速度响应在风速小于20 m/s时受车速影响不大,竖向位移和加速度随车速增大而增大;车辆的响应随车速的增大而增大,当风速达20 m/s后,车辆的动力性能主要由风速控制;单、双线行车时,桥梁的竖向动力响应差异较大,车辆的动力响应差异较小。根据风-车-线-桥耦合分析结果,结合现有的安全性和舒适性评价指标,提出大风天气下桥上行车的风速-车速阈值,当横向平均风速30 m/s时,应封闭线路。  相似文献   

2.
为了解大跨度钢桁梁斜拉桥在不同车速下结构的动力响应规律,建立车辆匀速通过的动力模型,并将车辆模拟为弹簧-质量块,分析不同车速下钢桁梁跨中位置的竖向位移与弦杆应力响应情况。计算结果表明,随着车速的增大,跨中竖向位移的极值均有增大趋势,车辆对结构的冲击效应也越大,弦杆应力响应也越明显。  相似文献   

3.
为研究移动车辆荷载作用下车辆-桥梁系统的动力响应特性,以某三跨高墩连续刚构桥为对象,采用2轴7自由度车辆模型加载,探究车辆速度、行车数量及车辆载重因素对车桥系统动力响应的影响。结果表明:车辆的行驶速度基本不会影响桥梁的位移响应峰值,车辆以相同速度通过桥梁时,桥梁各跨的位移响应峰值存在差异,车桥发生共振时的车速为40 km/h;随着行车数量的增加,桥梁各跨跨中处于较大位移响应的持续时间明显加长,桥梁中跨跨中的位移响应峰值在2辆车行驶时取得极大值,而车辆的加速度峰值与加权加速度均方根值在6辆车通过桥梁时取得极大值;随着车辆载重的增加,桥梁的位移及加速度响应总体呈增长趋势,而桥梁的冲击系数与车辆各项动力指标的响应则呈下降趋势。  相似文献   

4.
为研究在动力荷载作用下,大跨度钢桁梁斜拉桥主桁架的动力效应,将车辆模拟为弹簧-质量块模型,并以贵黔高速公路鸭池河特大桥为工程背景,基于Ansys瞬态分析功能建立了车辆匀速通过的有限元动力模型,分析了主桁架构件的响应情况,包括构件轴力变化幅度、下弦杆动应力及构件冲击系数。结果表明:不同位置构件的动力响应程度不同,主桁架中下弦杆轴力变化幅度最大,上弦杆次之,竖腹杆最小;上弦杆是对动力效应最为敏感的构件,且跨中构件的动静载的轴力变化幅度比值较其他位置大;跨中下弦杆应力时程曲线是在静力解曲线的基础上浮动,随着车速的增加,浮动的幅度也越大;动力荷载对主桁架构件的冲击作用十分显著,主桁架构件的冲击系数随车速增加而显著增大,高车速行驶时,跨中构件的冲击系数远大于规范计算值,在桥梁设计中宜对构件进行动力分析。  相似文献   

5.
该文以某斜拉桥为工程背景,对移动车辆荷载作用下大跨度斜拉桥的行车舒适性进行了研究。利用Midas/Civil建立有限元模型,计算出在不同车速作用下斜拉桥跨中位置的动力响应,其中包括位移、速度以及加速度。根据结构的振动响应,利用舒适度评价指标对斜拉桥进行舒适性研究。结果表明:车速对车辆的行车舒适性有较大的影响,但并非车速越高行车舒适性越低。  相似文献   

6.
为了研究沈阳市三好桥(公路钢拱塔斜拉桥)在汽车荷载作用下的动态响应,通过测试得到不同速度的车辆通过时桥梁的竖向振幅和冲击系数,通过数值分析得到不同阻尼桥梁相应的动态响应和动力放大系数。分析结果表明:桥面平整的桥梁可采用数值方法计算桥梁的动态响应及其动力放大系数;主梁的位移和弯矩的冲击系数与车速呈波动变化,塔根弯矩的冲击系数、斜拉索和水平索最大索力和应力幅的冲击系数随着车速的增大而增大;不考虑阻尼时,桥梁各响应量的冲击系数的值偏大;考虑阻尼比时,各响应量的冲击系数随着桥梁阻尼比的增大而减小;阻尼比较小的桥梁,阻尼比对其动力响应影响较小。  相似文献   

7.
为了研究桩基和场地土以及地震动空间效应对大跨斜拉桥地震反应的影响,以一座试设计主跨1 400m超大跨斜拉桥为试验原型,按1/70几何缩尺比设计和制作了一座包括群桩基础、模型土和上部结构等在内的试验全模型,缩尺后试验模型全长38.2m;根据动力等效原则,采用由砂子和木屑均匀混合而成的模型土模拟场地土,且用层状剪切土箱盛放。采用时间滞后的方法实现行波效应,通过多点振动台试验分别研究了纵向行波、横向行波对超大跨斜拉桥地震响应的影响及其机理。试验结果表明:行波作用对斜拉桥地震响应的影响非常复杂,纵向行波使塔顶纵向加速度和主跨竖向加速度的最大增幅分别约为50%和40%,而横向行波使塔顶和主跨横向加速度的最大减幅分别为15%和50%;纵向行波使主跨竖向位移的最大增幅约为40%,而横向行波使其横向相对位移的最大减幅为20%。行波作用对斜拉桥不同构件地震响应的影响也不同,与一致激励结果相比,纵向行波使塔顶、塔-梁以及墩顶相对纵向位移的最大减幅分别约为50%、40%和60%,使主跨竖向位移的最大增幅约为40%。此外,试验发现桩-土-结构相互作用对主塔、桥墩的加速度响应产生明显不利影响,使塔底增大2倍多,墩底增大1.1~4.0倍。基于上述结果,建议在斜拉桥地震反应分析或抗震设计时,需考虑行波效应和桩-土-结构相互作用等因素的影响,特别是其不利影响。  相似文献   

8.
《公路》2017,(2)
进行了外包钢板混凝土墩柱在车辆碰撞作用下的动力性能模型试验,通过采集撞击过程中的撞击力时程、桥墩的加速度及位移响应时程,分析研究了车速、车辆质量、轴压比等对撞击过程中外包钢板混凝土桥墩动力响应的影响。研究结果表明,撞击力的大小与车速、车辆质量、轴压比均成正相关关系;桥墩的加速度与位移响应均随车速提高而增大,桥墩顶部的加速度可能大于也可能小于撞击位置处的加速度,而桥墩顶部的位移总是大于撞击处的位移;桥墩位移与车辆质量之间近似成线性关系,随轴压比增大而减小。研究结果为进一步研究实际车辆与桥梁撞击及桥梁防撞设计提供了数据参考。  相似文献   

9.
为研究风荷载下多线铁路桥双车交会的动力响应,以某六线双层铁路斜拉桥为背景,采用桥梁结构分析软件BANSYS建立有限元模型,对不同双车交会组合进行风-车-桥系统耦合振动分析,计算各工况下车辆和桥梁的动力响应,并研究双车交会横桥向间距、车桥相对位置和风速对车辆和桥梁动力响应的影响。结果表明:双车交会过程中,迎风侧车辆的加速度变化不明显,背风侧车辆的加速度明显变大;双车横桥向间距对背风侧车辆的横向加速度有不同程度的影响,竖向加速度有明显突变;横桥向间距对桥梁的横向位移略有影响,对竖向位移几乎无影响;双车横桥向间距相同时,靠近来流方向车道交会时车辆加速度比远离来流方向车道交会时大;迎风侧车辆的加速度随风速增大而增大;桥梁跨中横向位移随风速增大而变大,竖向位移和扭转角受风速的影响较小。  相似文献   

10.
李秉南  戴航 《公路》2012,(3):30-34
以某主跨110m的自锚式钢管混凝土中承桁架拱桥为对象,分析了该桥的自由振动特性和移动车辆荷载作用下主跨桥面系的振动特性。计算结果表明:采用单轴和双轴移动车辆模型计算出的桥面系振动特性差别不大;不同车速的移动车辆荷载引起桥面系的振动响应不同,车速快时,桥面系竖向振动的最大位移减小,竖向振动的最大速度和加速度增加。  相似文献   

11.
把车辆和桥梁结构看成相互作用的两个子系统,分别建立二者的力学模型和振动微分方程。在求解过程中,通过位移协调条件和两个子系统间相互作用力相等的原则把两个子系统的振动微分方程耦合起来。利用有限元分析软件ANYSYS的二次开发语言APDL编写了求解车桥系统耦合振动微分方程的迭代计算命令流。以桥面不平顺为激振源,分析了主跨为550 m的福建长门大桥当多车辆通过时在各级桥面不平顺情况下的动力响应。计算结果表明,随着桥面不平顺程度的增加,桥梁结构和车体的动力响应均呈非线性增大,其中桥梁主跨跨中位移、主跨最外侧拉索应力和车辆加速度变化显著。  相似文献   

12.
本文在建立车辆-道路耦合系统分析模型的基础之上,编制了车路耦合系统的动力仿真程序,研究了不同路面不平顺幅值,不同车辆行驶速度,不同车辆载重以及轴数的变化等参数情况下路面结构不同节点的位移及加速度随参数的变化情况;并探讨了不同路面结构层厚度组合情况下对路面结构的动力响应的影响,研究结果表明路面不平顺幅值对于路面结构的位移与加速度响应影响巨大;车速增加虽不影响路面结构的位移响应,但是增大了路面结构的加速度响应从而增大了对于路面结构的冲击作用;载重的增大会显著增大路面结构的位移与加速度响应;不同路面结构层厚度的组合会显著影响路面结构系统的动力响应,相关的研究还有待于进一步的理论与试验验证。  相似文献   

13.
双工字钢-混凝土板组合梁桥自重轻,车辆质量与主梁模态质量之比可达到1/10,可能出现过大的动力响应导致行车舒适性差,危及行车安全。为了研究该类桥车桥耦合振动机理及影响因素,对某在建的单跨35m四跨一联的双工字钢-混凝土板组合梁桥进行动力特性分析、车桥耦合振动数值模拟及行车动力响应测试。结果表明:该类桥前4阶固有频率较为接近,在不同载重和车速下可能会发生多个频率的振动,车辆过桥的附加惯性质量使结构的振动频率有所降低;试验车过桥的速度和加速度评估该桥舒适性较好;车辆载重与车速对冲击系数的影响复杂,无明显规律,路面等级越好和阻尼比越大,冲击系数越小,对桥面进行平整度处理和增加结构阻尼是降低振幅和车辆冲击效应及提高舒适性的有效方法。  相似文献   

14.
为了对采用吊拉主动加固方法的钢筋混凝土系杆拱桥进行基于车桥耦合振动分析的加固效果评价,首先,利用ANSYS软件建立空间梁、板和杆单元的桥梁结构有限元梁格模型,并选取三轴9自由度的车辆模型及路面不平度等级B分别模拟实际车辆及桥面状态,将梁格模型调入BDANS软件,通过数值模拟车、桥动力响应,计算得到桥梁动位移、加速度响应,研究加固前后桥梁控制截面所受到的动力冲击作用;然后,分析桥梁加固前后不同位置加速度响应的频谱特征;最后,对依托工程动力特征、动态响应及车桥耦合作用的实测值与理论值进行比较分析。结果表明:通过该方法加固后结构的竖向自振频率较加固前均有提升,但提升幅度较小;加固前后结构不同位置的动力响应随车速增加呈逐渐增大的趋势,且车速在60~80 km·h-1时,加固后结构跨中截面的动力响应降幅最大;加固后结构控制截面的加速度均方根值小于加固前,根据其变化幅值建议车辆通过加固后桥梁结构的速度为60 km·h-1,以保证行人过桥时的体感舒适度、通行效率及行车安全;通过理论值与实测值的对比分析,验证了基于车桥耦合振动分析方法对桥梁结构加固后行车性能评价的有效性。  相似文献   

15.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

16.
在不中断交通情况下进行斜拉索更换施工时,行车效应的影响性与运营状态有较大差异,为了确定合理的交通限制措施,需要对重载车辆在不同车速下的桥跨结构反应进行分析。该文采用基于直接积分法的时程分析技术,以某换索斜拉桥为工程背景,分析了控制性载重车辆在不同车速下行车对桥跨结构的作用效应,指出在斜拉索卸除的情况下,行车时的冲击效应相比运营状态下有较明显增大,而行车引起的结构反应时程曲线的峰值并非随车速增大而增大;因此,施工控制中需要根据具体桥梁情况确定适用的冲击系数和限制车速。  相似文献   

17.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

18.
为了探明流冰撞击桥墩对高速车辆-轨道-桥梁耦合系统动力学行为的影响,采用精细化有限元模型模拟了流冰撞击桥墩的过程,计算获得了不同冰排特性下流冰撞击力时程曲线,基于列车-轨道-桥梁动力相互作用理论,以流冰荷载作为外激励,建立了高速车辆-轨道-桥梁-冰击动力学分析模型。以5跨32 m简支梁为例,通过研究不同冰击荷载作用下桥梁结构的动力学响应,得到了对桥梁结构影响最大的冰击荷载,分析了在该冰击荷载作用下桥梁子系统和车辆子系统的动力学响应,最后探讨了冰击荷载对桥上列车走行性的影响。结果表明:在冰击荷载作用下,冰排厚度、流冰撞击速度和冰排抗压强度是影响桥梁动力学响应的关键参数,桥梁跨中和墩顶横向位移与加速度随冰排厚度和抗压强度的增加而增大,且随流冰撞击速度的增加呈先增大后减小趋势;流冰撞击桥墩对车辆-轨道-桥梁系统动力学响应影响显著,在冰击荷载作用下主梁横向位移和加速度增幅较大,跨中横向加速度主频与桥梁横向自振频率接近,表明流冰撞击可能会加剧桥梁横向自振频率附近的振动;车体横向振动加速度、脱轨系数、轮轨横向力和轮重减载率在流冰撞击作用下均明显增大,增幅超过2倍,可见流冰撞击对高速列车行车安全性和乘坐舒适性有较大影响。  相似文献   

19.
为了揭示交通超载车辆荷载引发或加剧黄土边坡失稳的机制,通过共振柱试验研究了不同动荷载条件下黄土的动力特性。基于此,建立黄土边坡动力分析模型,分析超载车辆荷载作用下边坡的动态响应规律。结果表明:当车速一定时,位移、速度、加速度响应随交通车辆轴载的增加近线性增大。当轴载不变时,车速在30~50 km/h之间易引起边坡土体的共振响应。在低速、超载行驶的交通车辆荷载作用下,易产生不利于黄土边坡稳定的动态响应,相对于下坡面,上坡面更易失稳。  相似文献   

20.
考虑车辆荷载对桥梁结构的冲击作用是现代桥梁设计中的重要内容之一。为了研究桥梁结构在车桥耦合振动情况下所受到的冲击效应,以润扬长江大桥北汊桥主桥为例进行了分析。分别利用有限元法和动力平衡原理建立了桥梁结构动力分析模型和车辆的多刚体动力学模型。以桥面不平顺为激振源,借助于车辆和桥梁两个子系统之间力和位移的协调条件,用Newmark-β法求解车桥系统的振动微分方程,分析桥梁结构的动力响应和冲击系数。计算结果表明,桥面不平顺对桥梁冲击系数有明显的影响,车速的增加使剪力冲击系数显著增大,车重的增加使各种冲击系数均有所降低,车辆运行路线与桥梁中心线距离的增大使扭矩冲击系数增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号