首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
为了研究不同湍流模型、湍流度及不同风速作用下漂浮式风力机(FOWT)基础的运动特性,以国际能源署(IEA)公开的15MW级大型半潜式浮式风机为研究对象,采用OPENFAST软件对浮式风机进行全耦合时域仿真模拟,对平台的纵荡、纵摇和垂荡运动特性进行研究分析。研究发现:在正常湍流作用下,风速高于额定条件时,平台在压载水主动调节作用下使得纵荡更加稳定,但伴随着风速增大,其对平台纵摇和艏摇的影响越剧烈;在极端湍流作用下,风速低于额定条件时,风机运行效率低,而在高于额定条件时,艏摇运动幅值增大,纵摇和垂荡运动表现得更加稳定。  相似文献   

2.
本文提出一种适用于50~120 m水深的新型半潜式浮式风机,用频域法研究浮式平台的水动力特性,通过建立风机-塔筒-浮式平台-系泊系统全耦合分析模型,考虑二阶差频波浪力作用,对其开展风、浪、流联合作用下的时域分析,重点分析不同流速条件下新型半潜式浮式风机耦合动力响应特性。分析结果表明:新型半潜式浮式风机结构设计合理,其固有周期能较好地避开波浪能量密集的周期范围,有效避免了共振发生;风浪条件一定的情况下,流速增大将使新型半潜式浮式风机的最大纵荡响应和锚链拉力显著增大,但对纵摇和艏摇响应有一定程度的抑制作用。流速变化对基础垂荡运动和发电功率影响较小。  相似文献   

3.
高巍  石扬  张继春 《船舶工程》2018,40(1):106-112
本文以OC3 Hywind Spar基础浮式风机为研究对象,采用先进的空气动力-水动力耦合时域分析方法,针对其在中国南海某海域风浪流共同作用下,系泊系统、浮式基础运动以及风机与塔桶载荷响应进行分析。对比了定常风与湍流风模型对浮式风机系泊系统、整体运动响应以及风机载荷的影响。计算结果表明:相比于湍流风,采用定常风进行浮式风机系泊系统分析将得到偏于危险的结果,同时浮式风机运动响应与风机载荷结果偏小。本文建议在系泊系统初始设计阶段采用定常风方法进行设计,在系泊分析阶段采用湍流风进行分析,以保证浮式风机长期服役安全。  相似文献   

4.
以OC3 Hywind Spar基础浮式风机为研究对象,采用先进的空气动力-水动力耦合时域分析方法,对其在中国南海某海域风浪流共同作用下的系泊系统、浮式基础运动以及风机和塔架载荷响应进行分析,对比定常风与湍流风模型对浮式风机系泊系统、整体运动响应以及风机载荷的影响。计算结果表明:相比于湍流风,采用定常风进行浮式风机系泊系统分析将得到偏于危险的结果,并且,浮式风机运动响应与风机载荷结果偏小。因此,建议在系泊系统初始设计阶段采用定常风方法进行设计,在系泊分析阶段采用湍流风进行分析,以保证浮式风机的长期服役安全。  相似文献   

5.
近年来海上浮式风机的研究备受关注,安全可靠的系泊系统将保证风机在风、浪、流等复杂环境荷载作用下稳定运行,准确合理地描述风机运动将为评估风机发电效率提供支持。以半潜型浮式风机的系泊系统为研究对象,基于经典悬链线理论,采用准静态分析法提出一套系泊系统的设计方法。通过坐标变换,得到风轮真实的俯仰运动用于计算风机的动力效应及评定其发电效率。采用动力法分析了系泊系统锚链的导缆孔位置、预张力大小、锚链间夹角等参数对风机系统发电效率、浮式平台运动性能和系泊锚链张力的影响,得到了浮式平台迎风面俯仰倾角、水平偏移及锚链张力随参数的变化规律,为半潜型浮式风机系泊系统的设计提供了参考。  相似文献   

6.
为分析风浪联合作用下海上TLP浮式风机动态特性,采用叶素动量理论,建立了考虑平台运动的风荷载计算程序,并用FAST进行验证。通过AQWA二次开发实时调用耦合平台运动的风荷载计算程序进行海上TLP浮式风机全耦合动态响应分析,研究了风、浪作用下TLP浮式风机平台及张力筋腱响应特性。结果表明,平台运动致使风荷载波动幅度增大,风荷载幅值在波频处出现峰值,分析中需考虑平台运动与风速之间的耦合效应;正常工况下风荷载使得TLP浮式风机运动响应幅值在低频处的数量级明显增大,整体分析中需详细计算风荷载的影响。  相似文献   

7.
本文基于模型试验,研究了立柱截面形状和来流方向对浮式平台涡激运动特征的影响,并着重分析了涡激运动的不同阶段艏摇运动与横荡、纵荡运动的耦合特征.结果表明:立柱截面形状和来流方向会对浮式平台的涡激运动响应和耦合特征产生明显影响;在大多数工况下,圆柱平台的横荡和纵荡运动幅值均大于方柱平台,最高可达6.1倍.但是在45°流向下,圆柱和方柱的横荡运动幅值比较接近,当约化速度超过12后,方柱平台的横荡运动幅值甚至超过了圆柱平台;相同工况下,方柱平台的艏摇运动响应幅值远大于圆柱平台,并且在45°流向下方柱平台艏摇运动中观察到了"涡激共振"现象;不同流向下,方柱和圆柱平台涡激运动频率随约化速度变化规律比较类似,大致可分为三个阶段,但在不同阶段涡激运动耦合特征差别较大,并且在45°流向下方柱平台艏摇运动中观察到了特殊的"主频跳动"现象.  相似文献   

8.
研究规则波中内转塔浮式生产储卸油平台(FPSO)的艏摇失稳现象。采用SESAM软件建立船舶水动力模型并计算水动力系数。考虑平均漂移力,建立了FPSO艏摇单自由度非线性动力学方程。应用Lyapunov稳定性定理分析平衡艏摇角随波长-船长比的叉形分岔现象,并与模型试验进行对比,结果吻合较好,验证了理论分析的正确性。分析了横摇和纵摇阻尼、内转塔位置和载况对FPSO艏摇失稳的影响。考虑一阶波浪力和平均漂移力,建立了FPSO的6自由度全耦合动力学方程并数值求解,研究艏摇失稳时FPSO的6自由度运动响应,分析艏摇初始条件的影响。计算结果表明,初始条件的细微差异会导致不同的运动响应,艏摇失稳会显著增大横摇响应幅值。  相似文献   

9.
基于非稳态致动线模型求解三维N-S方程的方法,对OC3项目Hywindspar基础的浮式风机进行其气动-水动-锚泊系统的耦合动力数值分析.计算分析分为两个部分:将上部风轮受到的气动推力简化为定常力(力矩),作用于平台;风机叶片简化为致动线模型耦合到CFD求解器naoe-FOAM-SJTU中,进行浮式风机系统的耦合动力分析.最后,对比分析两种情况下浮式风机系统的气动以及水动力响应.分析结果显示:相对于简化力模型,基于致动线方法的耦合分析模型可以有效且准确模拟分析浮式风机系统的气动-水动力性能.  相似文献   

10.
深吃水圆筒型浮式核能平台是一种新型多功能高效平台,可有效解决南海岛礁开发过程中的能源供给问题。在一定来流速度下,尾流区交替泄涡进而诱导平台发生涡激运动(vortex induced motions, VIM),这将严重加速系泊和立管系统疲劳损害,同时对平台内部核反应堆运行产生不利影响。基于改进的延迟分离涡方法(improved delayed detached eddy simulation, IDDES)对平台在不同折合速度下的横荡、纵荡、艏摇运动响应进行数值模拟,并从水平面内质心运动轨迹、运动频率、三维流场特性等角度分析涡激运动关键特征。研究结果表明:当折合速度5.45 相似文献   

11.
In designing the support structures of floating wind turbines (FWTs), a key challenge is to determine the load effects (at the cross-sectional load and stress level). This is because FWTs are subjected to complex global, local, static, and dynamic loads in stochastic environmental conditions. Up to now, most of the studies of FWTs have focused on the dynamic motion characteristics of FWTs, while minimal research has touched upon the internal load effects of the support structure. However, a good understanding of the structural load effects is essential since it is the basis for achieving a good design. Motivated by the situation, this study deals with the global load effect analysis for FWT support structures. A semi-submersible hull of a 10-MW FWT is used in the case study. A novel analysis method is employed to obtain the time-domain internal load effects of the floater, which account for the static and dynamic global loads under the still water, wind, and wave loads and associated motions. The investigation of the internal stresses resulting from various global loads under operational and parked conditions and the dynamic behavior of the structural load effects in various environmental conditions are made. The dominating load components for structural responses of the semi-submersible floater and the significant dynamic characteristics under different wind and wave conditions are identified. The dynamic load effects of the floating support structure are investigated by considering the influence of the second-order wave loads, viscous drag loads induced global motions, and wind and wave misalignments. The main results are discussed, and the main findings are summarized. The insights gained provide a basis for improving the design and analysis of FWT support structures.  相似文献   

12.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

13.
This work presents a novel object-oriented approach to model the fully-coupled dynamic response of floating offshore wind turbines (FOWTs). The key features offered by the method are the following: 1) its structure naturally allows for easy implementation of arbitrary platform geometries and platform/rotor configurations, 2) the analysis time is significantly faster than that of standard codes and results are accurate in situations where rotor dynamic contribution is negligible, and 3) an extremely flexible modeling environment is offered by the object-oriented nature of Modelica. Moreover, the current modeling facility used for the code development is open source and is naturally suitable for code sharing. In the present method, the aerodynamic model computes the aerodynamic loads through the mapping of steady-state aerodynamic coefficients. This modeling approach can be placed at the intersection between simplified aerodynamic methods, such as TDHMill, and full beam element/momentum-based aerodynamic methods. Aerodynamic loads obtained from the coefficients mapping are composed of a concentrated thrust and a concentrated torque. The thrust acts at the hub, while the torque is applied at the rotor low-speed shaft of a simplified rigid rotor equation of motion (EoM) used to emulate the rotor response. The aerodynamic coefficients are computed in FAST for a baseline 5 MW wind turbine. A standard rotor-collective blade-pitch control model is implemented. The system is assumed to be rigid. Linear hydrodynamics is employed to compute hydrodynamic loads. The industry-standard numerical-panel code Sesam-Wadam (DNV-GL) is used to preprocess the frequency-domain hydrodynamic problem. Validation of the code considers a standard spar-buoy platform, based on the Offshore Code Comparison Collaboration (OC3-Hywind). The dynamic response is tested in terms of free-decay response, Response Amplitude Operator (RAO), and the time histories and power spectral densities (PSDs) of several load cases including irregular waves and turbulent wind. The resulting model is benchmarked against well-known code-to-code comparisons and a good agreement is obtained.  相似文献   

14.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

15.
In this article, we analyze the linear stability of tandem offloading systems in wind, current, and waves. The wind and current forces are evaluated with the help of published experimental data, while the hydrodynamic coefficients and wave drift forces are rigorously estimated by using a three-dimensional singularity distribution method based on potential theory. The bow hawser and mooring lines are described quasistatically by elastic catenary equations. In order to examine the linear static and dynamic stability of the system, the equations for surge, sway, and yaw are linearized. The effect of design parameters such as turret position, mooring stiffness, and hawser length and stiffness on stability is investigated based on linearized model. The stability analysis clarifies the mechanism of the limit cycle for tandem offloading systems, which is known as fishtailing motion. The theoretical results of the shape and amplitude of the limit cycle are found to be in good agreement with those of simulations and experiments.  相似文献   

16.
苏义鑫  赵俊 《船舶工程》2015,37(3):49-52
鉴于广义预测控制(GPC)方法能用同一方式处理设备和安全约束,且具有较强的抗扰动能力,提出了一种基于GPC的船舶动力定位约束控制器设计方法。运用前馈控制器克服风力扰动的影响,且所产生的前馈量被用来实时修正推力约束,在修正后的推力约束下滚动优化GPC。对承受风、浪、流扰动的某供应船,采用提出的方法设计控制器,并进行仿真验证。仿真结果表明,所设计的控制器抗扰动能力较强,能完成对船舶的动力定位约束控制。  相似文献   

17.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

18.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

19.
In order to achieve safe navigation, it is important to be able to understand and calculate the effects of an external force on the maneuvering behavior of a ship. This paper analyzes the course stability and yaw motion of a ship traveling under steady wind conditions. A course stability criterion and approximate formulae for the yaw motion in steady wind, including the aero/hydrodynamic force derivatives for the ship, are derived. To confirm the reliability of the criterion and formulae, they were used to investigate a pure car carrier in steady wind. The results of this investigation revealed that course instability appears in the head and following wind directions, mainly under the influence of aerodynamic derivatives with respect to the yaw restoring forces. However, this course instability can be reduced by applying steering control. For winds ranging from head winds to beam winds, yaw oscillation appears when the period is relatively long and the damping is small. The analytical formulae derived here can be used to gain a better understanding of ship maneuvering behavior in steady wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号