首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
花都至东莞高速广园快速路跨线桥为(75+125+75) m矮墩混凝土连续刚构桥,上部结构为单箱单室直腹板变截面预应力混凝土箱梁,中跨采用顶推合龙。利用Midas/Civil软件建立三维空间有限元模型,进行顶推效应计算,分析顶推合龙对于施工预拱度的影响,以及顶推对主梁受力性能的改善情况。通过计算可知,顶推对主梁施工预拱度影响较为明显;通过施加顶推力,可以改善混凝土收缩徐变引起的主梁下挠现象,可以改善主梁及主墩的受力性能。同时研究顶推过程中顶推力与位移、应力之间的关系,提出矮墩连续刚构桥中跨合龙顶推过程控制方法,为同类型的桥梁顶推合龙施工控制提供了一定的参考。  相似文献   

2.
双主跨连续刚构桥合龙顶推分析   总被引:1,自引:0,他引:1  
大跨径预应力混凝土连续刚构桥中跨合龙时,施加水平顶推力的方法能有效消除合龙温差、成桥后收缩徐变等引起的主梁下挠、主梁主墩水平偏位以及结构附加内力。结合某双主跨连续刚构桥实例,考虑高桩承台基础对基础以上桥梁结构的影响,利用有限元软件建模计算,阐述双主跨同步合龙时顶推力的确定与实施,分析顶推效果。  相似文献   

3.
水磨湾特大桥合龙段预顶推施工   总被引:1,自引:0,他引:1  
张超  周东久 《中外公路》2005,25(3):69-71
温度和后期混凝土收缩徐变在桥梁合龙后产生一定的收缩量,迫使两主墩向跨中方向位移,墩顶、墩底产生较大的弯矩,同时主梁受到混凝土纤维的限制产生拉应力。对结构造成危害。该桥通过在中跨合龙前预先向两岸施加的一个水平推力。以抵消混凝土收缩徐变及降温引起的收缩量,改善了主梁和墩顶的受力状态。  相似文献   

4.
襄阳汉江五桥主桥(左、右航道桥)为梁拱组合体系连续刚构桥,4跨连续结构,主墩采用双肢薄壁墩。为降低运营阶段主梁混凝土收缩徐变、温度荷载等对边墩的不利影响,设计要求在施工阶段对中跨合龙前对合龙口进行顶推,储备一定的应力与预偏在2个边墩处。在以往项目中,类似的合龙顺序与顶推工艺较少见,本文对汉江五桥顶推装置设计、顶推施工、顶推观测等方面进行了总结提炼,为类似工程提供参考。  相似文献   

5.
张刚刚  吴重男 《中外公路》2011,31(5):119-123
连续刚构桥跨中合龙时施加顶推力,可以改善上部结构混凝土收缩、徐变及温度效应对连续刚构桥主墩受力及变位产生的不利影响,但顶推力设计取值应遵循什么原则,顶推力与墩身内力及变位有什么关系并无明确论述.笔者论述了顶推力设计原则并通过2座连续刚构桥的顶推力设计进行了顶推力与墩身内力及变位的分析.  相似文献   

6.
针对大跨径连续刚构桥主梁合龙顶推的问题,采用实测数据和理论分析相结合的方法,研究不同顶推力和墩顶位移增量的相互关系,分析主梁顶推合龙工艺和传统顶推工艺的不同机理。结果表明:通过消除桥梁混凝土收缩及徐变效应产生的不利位移,并采用在墩顶预先设置有利位移的合龙顶推力的计算方法合理可行;顶推力和墩顶位移量之间呈线性关系;顶推施工改变了传统的合龙顺序,优化了上、下部结构受力,缩短了工期。  相似文献   

7.
为研究有无顶推力合龙对多跨连续刚构桥合龙施工的影响,以三圣特大桥为例,建立5跨连续刚构桥的有限元模型,分别计算施工、合龙温度、混凝土收缩徐变等工况下引起的墩顶水平位移,推导出该桥顶推力的计算公式并得到合理顶推力值,分析在有无顶推力作用下桥梁结构的位移和应力变化。结果表明,顶推力与桥墩的墩顶水平位移线性相关;墩高较高(H≥80 m)时,有无顶推合龙的桥梁都处于安全状态,但不顶推合龙技术能降低施工难度,缩短施工周期,经济效益更为显著。  相似文献   

8.
多跨连续刚构桥顶推合龙方案研究   总被引:2,自引:0,他引:2  
混凝土收缩徐变长期作用及温度变化将对连续刚构桥主梁和桥墩的变形及内力产生较大影响.该文结合何家坝大桥工程实例,开展了多跨连续刚构桥合龙方案及合龙段顶推量取值的研究.通过分析比较,得到了多跨连续刚构桥合理的合龙方案及顶推力大小的优化计算公式.结果表明,六跨一联的何家坝大桥,其合龙顺序并不是常规的从边跨到中跨,边跨、中跨、次中跨的合龙顺序更有利于改善主梁与桥墩的变形,且能有效地改善桥墩底部的受力.  相似文献   

9.
以临县黄河桥为工程实例,探讨了多孔大跨度连续刚构桥,通过采取改变合龙顺序、在合龙前施加水平顶推力等合龙措施,来控制和减小由降温和混凝土收缩、徐变引起的边墩墩顶位移过大对桥墩的不利影响。  相似文献   

10.
北盘江大桥主桥为(82.5+220+290+220+82.5)m双幅预应力混凝土空腹式连续刚构桥.该桥结构跨度较大,运营阶段受混凝土部分收缩徐变及合龙温度影响,主墩及次边墩墩顶水平位移较大,对桥墩结构受力较为不利,需在中跨及次边跨合龙前进行水平顶推施工,且2幅桥梁之间在主墩斜腿处存在平联连接,2幅桥梁合龙顶推施工相互影响,与常规2幅相互独立的桥梁顶推施工差异较大.为保证顶推施工中改善各墩的受力状态,以消除各墩墩顶水平位移为原则,分析成桥状态下墩顶位移,确定了合理的顶推量及顶推力.并对2幅独立合龙顶推、双幅同步合龙顶推方案中各主墩的扭转、合龙口标高及顶推量等参数进行对比分析,确定了双幅同步合龙顶推方案较为合理.  相似文献   

11.
汉十高铁崔家营汉江特大桥主桥为(135+2×300+135)m四跨连续刚构拱桥。为实现该桥的精确合龙,考虑混凝土收缩徐变效应、温度效应、合龙段钢束荷载作用,采用MIDAS Civil建立该桥有限元模型,并结合施工现场试顶实测数据,研究主梁合龙时桥墩墩顶偏位及对顶力,进行合龙控制。结果表明,混凝土收缩徐变效应、降温效应、合龙段钢束荷载作用对桥墩墩顶偏位的影响方向一致,叠加后对墩身受力较为不利;对顶过程实测墩顶偏位约为理论计算值70%,需对控制偏位、对顶力进行修正;考虑结构实际刚度偏大,最终对顶控制墩顶偏位取理论计算值的80%以进行合龙控制,对比可知,墩顶实测偏位与控制偏位最大偏差为3.6%,成桥线形与预期吻合较好。  相似文献   

12.
采用悬臂浇筑法施工的高墩大跨径连续刚构桥,合龙段的控制极为重要,而且混凝土收缩徐变及高温合龙也会产生较大影响,需要在合龙前进行水平顶推来解决此问题。本文以某连续刚构桥为例,对合龙段施工的关键技术进行探讨,希望为此类桥梁的施工和监控工作提供参考。  相似文献   

13.
混凝土的收缩和徐变对于大跨径连续刚构桥来说是一个非常重要的影响因素,利用有限元分析软件Midas/Civil建立起连续刚构桥有限元模型,并且分别就主梁挠度、预拱度控制以及预应力损失中的混凝土收缩和徐变影响进行了分析,得出了混凝土收缩徐变对桥梁结构影响的具体规律,有利于指导连续刚构桥的设计和施工。  相似文献   

14.
连续刚构合拢段施工时,由于合拢温度的差异和混凝土收缩徐变产生的影响,均会使主墩和主梁分别产生结构变位和次内力,为了抵消上述因素产生的影响,需要在合拢前对合拢段两端进行顶推施工。顶推施工的关键在于确定合理的顶推力及合拢顶推方案,本文以三跨连续刚构中跨合拢段施工为例,介绍了顶推力设计的原则,并建立了Midas有限元模型对合拢温差及混凝土收缩徐变产生的影响进行理论计算,然后再进行现场顶推力测试效果分析,为同类工程提供参考。  相似文献   

15.
在施工监控过程中设置合理预拱度,使连续刚构桥能够顺利合龙,以及提高桥面线形的平顺度。以康家河大桥为工程背景,用Midas/Civil建立了空间有限元模型,进行了主梁挠度的计算。根据实际可能发生的情况,分析了结构自重、预应力损失、混凝土收缩徐变、梯度温度对主梁挠度的影响。  相似文献   

16.
大嶝大桥的主桥为五跨连续矮墩刚构桥.为考虑上下部结构的共同作用,采用了将群桩基础模拟为双柱的整体分析法.计算了成桥内力和升降温、收缩徐变对结构内力的影响.为控制墩底弯矩,合龙温度以3~8 ℃为宜.但限于条件,结构只能在高温下合龙,为此探讨了采用合龙前梁端施加顶推力的合龙方法,并对顶推力的大小进行了计算.结构内力分析及验算表明,该方法能获得较理想的结构内力状态.  相似文献   

17.
利用有限元分析方法,对三跨预应力混凝土连续刚构桥的悬臂施工过程进行了数值模拟,分别计算了在不同徐变计算模式下的施工预拱度,研究混凝土收缩徐变对施工预拱度的贡献和不同徐变计算模式对施工预拱度的影响;另外,分别计算考虑混凝土收缩徐变和不考虑混凝土收缩徐变两种情况下的桥梁结构内力,分析了混凝土收缩徐变在桥梁悬臂施工期间对结构内力的影响。研究结果表明:混凝土收缩徐变对连续刚构桥施工预拱度有较大影响,且不同徐变计算模式对施工预拱度影响不同;在桥梁合龙前,桥梁结构为静定结构,若忽略钢筋和预应力筋的约束影响,混凝土收缩徐变对结构内力没有影响。  相似文献   

18.
矮塔斜拉桥为多次超静定结构,其后期变形及内力状态受合龙温度和混凝土收缩徐变影响较大。两者一起将使主塔在运营阶段处于偏心受压状态,受力较为不利,且会影响桥梁线形美观,并危及结构安全。为消除由合龙温差及收缩徐变对后期结构状态的影响,在连续刚构合龙时对梁体施加一个水平顶推力,使合龙前各主墩产生一定的反向预偏量,以此抵消上述因素引起的结构位移和二次内力。本文通过介绍南澳大桥中跨合龙施工过程中的平衡重设置、顶推力施加、劲性骨架锁定等关键工序操作要点及实施效果,分析总结了应重点注意事项,为类似工程施工提供参考。  相似文献   

19.
温度变化和混凝土收缩徐变对连续刚构桥主梁的变形及内力产生较大影响。该文结合贵州赫章特大桥工程实例,介绍了应变修正剔除的方法,通过对箱梁截面划分网格计算温度系数,从而通过程序进行立模修正;根据中性轴的应力可以利用预应力张拉前后的应变直接测量,而与主梁重量无关的特点来对混凝土徐变系数进行识别,从而得到混凝土徐变应变。  相似文献   

20.
宁波舟山港主通道舟岱大桥北通航孔桥为(125+250+125)m钢-混混合梁连续刚构桥,除主跨跨中85m范围主梁采用钢箱梁外,其余均采用变截面混凝土箱梁。该桥主墩墩顶混凝土主梁采用分块现浇,其余混凝土主梁采用节段预制、悬臂拼装法施工;主跨跨中钢箱梁采用2台桥面吊机整体起吊合龙。采用MIDAS Civil软件建立有限元模型,模拟桥梁施工过程,结合有限元计算进行该桥施工控制。施工中,考虑施工阶段、活载和运营阶段位移进行主梁制造预拱度控制;通过负误差动态控制主梁预制长度和角度误差;通过精确定位基准梁和调整环氧树脂胶厚度控制主梁拼装误差;通过对环境温度、合龙段吊装时钢-混结合段变形和钢箱梁变形修正进行钢箱梁制造长度控制。通过以上施工控制关键技术,混凝土主梁拼装完成时主梁轴线和高程最大悬臂拼装误差分别为15.1mm和1.4mm,钢箱梁合龙后精度在10mm以内,满足设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号