首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.  相似文献   

2.
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd ( doubler plate to chord wall thickness ratio) and ld/d1 ( dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.  相似文献   

3.
[Objective]This paper aims to study the characteristics and calculation method of the vibration and sound radiation of single ring-stiffened cylindrical shells with porous fiber composite materials installed in the inner wall under acoustic excitation. [Method ] Based on the equivalent fluid theory model of Johnson–Champoux–Allard (JCA) and the transfer matrix of the multilayer medium, a theoretical formula of the sound absorption coefficient of multilayer sound absorption structures is derived. The three methods for calculating the vibration and sound radiation of a single ring-stiffened cylindrical shell with porous fiber materials under acoustic excitation, namely acoustic solid modeling of porous media, finite element model combined with theoretical formula and imposition of impedance boundary on sound absorption coefficient, are then verified and compared. Finally, the influences of sound-absorbing material's thickness, backed-air gap, static flow resistance, and material arrangement order on the acoustic absorption performance of the cylindrical shell are investigated. [Results]The results show that laying porous fiber composite materials on the cylindrical shell internally can reduce the vibration and acoustic radiation of cylindrical shell structure. The sound absorption coefficient curve can quickly and effectively predict the resulting trend of the vibration and sound radiation of the cylindrical shell. [Conclusion]The acoustic absorption performance of sound absorption structures can be effectively improved through the rational design of their properties and arrangement order of the sound-absorbing materials in order to achieve the purpose of vibration and noise reduction. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

4.
[Objectives] As a new type of pressure-resistant structure, the titanium alloy sandwich cylindrical shell has not yet been studied comprehensively. The topology of the core layer needs to be confirmed using the optimization method. This paper carries out the core topology optimization of titanium alloy pressure-resistant sandwich cylindrical shells.[methods]An unreinforced cylindrical shell with high thickness is selected as the analysis object, and the axisymmetric element is used to calculate the structural stresses via ANSYS. The cylindrical shell is divided into the upper, middle and lower regions along the thickness direction. The structures of the middle region are set as the design variables, and a two-stage topology optimization mathematical model of its core structure is proposed. Based on Matlab, the main control program of the genetic algorithm is established to carry out the core layout optimization of the unreinforced cylindrical shell along the axial direction only and both the axial direction and radial direction respectively.[results]The optimal core topological form consists of equidistant ribs connecting the inner shell and outer shell vertically.[Conclusions]A sandwich cylindrical shell under hydrostatic pressure is a reasonable pressure-resistant structure. © 2023 Authors. All rights reserved.  相似文献   

5.
[Objectives]As composite materials have varied internal structures, an in-depth analysis of the damage mechanisms of their component materials can provide a research foundation for the ultimate strength analysis of composite stiffened panels. [Methods]The microscopic, mesoscopic and macroscopic mechanical analyses of marine glass fiber reinforced plastic (GFRP) composite stiffened panels are carried out using a multi-scale approach. Microscopic and mesoscopic representative volume element (RVE) models of chopped strand mat (CSM) and woven roving (WR) materials are established, and the macroscopic equivalent stiffness is obtained by homogenizing the RVE models. The ABAQUS VUMAT subroutine is used to code the progressive damage evolution model of the composite materials to derive the damage evolution mechanism of the microscopic and mesoscopic models respectively. The equivalent strength of macroscopic laminates is also obtained. [Results]The multi-scale approach can be used to accurately evaluate the macroscopic mechanical properties of composite materials, and the ultimate strength of composite stiffened panels is mainly determined by fiber bundle failure. [Conclusions]The obtained macroscopic material parameters can be used to calculate the ultimate strength of composite stiffened panels, while the parametric study of the mesomechanics of composite materials can provide an analysis tool for investigating the influence of material processing technology. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

6.
Based on the traditional Smoothed Particle Hydrodynamics (SPH) algorithm, the linked-list search algorithm combined with the variable smoothing length and square support domain was put forward to improve the calculation efficiency and guarantee the calculation accuracy. The physical process of high velocity fragment impact on a broadside liquid cabin was programmed for simulation. The numerical results agreed well with those of the general software ANSYS AUTODYN, which verifies the effectiveness and feasibility of the numerical method. From the perspective of the outer plate thickness of the liquid cabin, the width of the liquid cabin, and incident angle of the fragment, the influence of these parameters on protective mechanisms was analyzed to provide a basis for protective design of a broadside liquid cabin. Results show that the influence of outer plate thickness is not obvious; therefore, the conventional design can be adopted in the design of the outer plate. The width of the liquid cabin has a great influence on the residual velocity of the fragment and the width of the liquid cabin should be designed to be as wide as possible under the premise of meeting other requirements. There is a certain incident angle in which the velocity attenuation of the fragment is most obvious, and the high-pressure zone near the inner plate is asymmetric. The inner plate of liquid cabin should be strengthened according to the hull form, principal dimensions, and vulnerable points.  相似文献   

7.
Fracture behavior is one of the most important, yet still little understood properties of ultra-high performance cementitious composites (UHPCC), a new marine structural engineering material. Research on the fracture and direct tension behavior of UHPCC was carried out. The constitution law of UHPCC was divided into three phases: pre-partial debonding, partial debonding, and pullout phases. A direct tension constitution law was constructed based on the proposed fiber reinforcing parameter as a function of fiber volume fraction, fiber diameter and length, and fiber bonding strength. With the definition of linear crack shape, the energy release rate of UHPCC was derived and the R-curve equation was calculated from this. Loading tests of UHPCC using a three-point bending beam with an initial notch were carried out. The predictions from the proposed R-curve were in good agreement with the test results, indicating that the proposed R-curve accurately describes the fracture resistance of UHPCC. Introduction of a fiber reinforcement parameter bridges the fracture property R-curve and micro-composites' mechanics parameters together. This has laid the foundation for further research into fracture properties based on micro-mechanics. The proposed tension constitution law and R-curve can be references for future UHPCC fracture evaluation.  相似文献   

8.
In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cavitation elements are nonlinearly disposed based on the Green formula and perturbation potential panel method. At the same time, the method that combines cavity shape for fixed cavity length (CSCL) iteration and cavity shape for fixed cavitation number (CSCN) iteration is used to work out the thickness and length of hydrofoil cavitations. Through analysis of calculation results, it can be concluded that the jump of pressure and velocity potentially exist between cavitation end area and non-cavitations area on suction surface when cavitation occurs on hydrofoil. In certain angles of attack, the cavitation number has a negative impact on the length of cavitations. And under the same angle of attack and cavitation number, the bigger the thickness of the hydrofoil, the shorter the cavitations length.  相似文献   

9.
Characteristics of a bubble jet near a vertical wall   总被引:1,自引:0,他引:1  
A numerical model of a coupled bubble jet and wall was built on the assumption of potential flow and calculated by the boundary integral method. A three-dimensional computing program was then developed. Starting with the basic phenomenon of the interaction between a bubble and a wall, the dynamics of bubbles near rigid walls were studied systematically with the program. Calculated results agreed well with experimental results. The relationship between the Bjerknes effect of a wall and characteristic parameters was then studied and the calculated results of various cases were compared and discussed with the Blake criterion based on the Kelvin-impulse theory. Our analyses show that the angle of the jet's direction and the pressure on the rigid wall have a close relationship with collapse force and the bubble's characteristic parameters. From this, the application range of Blake criterion can be determined. This paper aims to provide a basis for future research on the dynamics of bubbles near a wall.  相似文献   

10.
To design a more effective blade pitch adjustment mechanism,research was done on changes to the hydrodynamic characteristics of VVPs(Variable Vector Propeller) caused by different rules for changing pitch angle. A mathematical method for predicting the hydrodynamic characteristics of a VVP under unsteady conditions is presented based on the panel method. Mathematical models for evaluation based on potential flow theory and the Green theorem are also presented. The hydrodynamic characteristics are numerically predicted. To avoid gaps between panels,hyperboloidal quadrilateral panels were used. The pressure Kutta condition on the trailing edge of the VVP blade was satisfied by the Newton-Raphson iterative procedure. The influence coefficients of the panels were calculated by Morino's analytical formulations to improve numerical calculation speed,and the method developed by Yanagizawa was used to eliminate the point singularity on derivation calculus while determining the velocities on propeller surfaces. The calculation results show that it's best for the hydrodynamic characteristics of the VVP that pitch angle changes follow the sine rule.  相似文献   

11.
A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.  相似文献   

12.
迎浪规则波中波浪增阻和船体垂向运动的数值预报(英文)   总被引:1,自引:0,他引:1  
The numerical prediction of added resistance and vertical ship motions of one ITTC (International Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SL JTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths (0.8Lpp≤λ≤1.5Lpp) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.  相似文献   

13.
Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.  相似文献   

14.
[Objectives]This study seeks to expand the bandgap frequency band, reduce the bandgap starting frequency and analyze and optimize the bandgap parameters of acoustic metamaterials. [Methods]The influence of geometrical and material parameters on the bandgap properties of acoustic metamaterials is analyzed, and a method for maximizing the bandgap width is proposed. The multi-objective optimization problem is converted into a single objective optimization problem by normalizing the bandgap frequency coefficients. Structural material conversion is achieved via the material selection optimization method, and the optimization equations of bandgap parameters are established on the basis of weight-lightening. For chiral acoustic metamaterials, the material properties (density and wave velocity) and geometric parameters (scatterer diameter, ligament thickness and coating thickness) are defined as design variables, and the comprehensive optimization of structural parameters and material selection of acoustic metamaterials based on weight-lightening are implemented. [Results]The optimization results show that the bandgap width increases by 27.7% and the lower bound frequency decreases by 1048 Hz, thereby achieving the goal of expanding the bandgap width based on lightweight acoustic metamaterials. The acoustic transmission analysis of the finite chiral acoustic metamaterial structure is then carried out to verify the effectiveness of the proposed method. [Conclusions]The results show that the goal of lightweight acoustic metamaterials can be effectively achieved by integrating the comprehensive optimization of structural parameters and materials. As such, this study provides references for the design of new-type acoustic metamaterials. © 2023 Authors. All rights reserved.  相似文献   

15.
[Objectives]In this paper, the numerical simulation method is used to study the anti-penetration performance and energy absorption mode of a stiffened plate, as well as the influence of different stiffened bars on the flight attitude of the projectile body.[Methods] Finite element software LS-DYNA is used to simulate the process of a truncated oval-nosed projectile penetrating a stiffened plate, and the results of the numerical simulation are compared with an experiment to verify the reliability of the numerical simulation method. The momentum method and mass equivalence method are used to predict the residual velocity of the projectile, and the applicability of different theoretical methods within different velocity ranges is compared. The deformation energy of different regions of the stiffened plate is then extracted to analyze the influence of the initial velocity of the projectile body on the energy absorption mode of the target plate. Finally, the structure of the stiffeners is changed and the influence of the relative position of the stiffeners on the penetration attitude of the projectile body is analyzed.[Results]The results show that the mass equivalence method is more accurate than the momentum method in predicting the residual velocity of the stiffened plate when the initial velocity of the projectile body is in the range of 300–900 m/s. The ratio of the deformation energy of the stiffened plate to the energy loss of the projectile body decreases with the increase of the initial velocity of the projectile body. The effect of a T-stiffened plate on trajectory is greater than that of a rectangular-stiffened plate.[Conclusions]The related calculation method and research results have certain reference value for research and engineering application surrounding the anti-penetration of stiffened plates. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

16.
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.  相似文献   

17.
This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.  相似文献   

18.
大型加强板结构焊接顺序的效果研究(英文)   总被引:1,自引:0,他引:1  
Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.  相似文献   

19.
The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray; with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.  相似文献   

20.
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号