首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
正确评价和预测轨道几何状态的发展与变化规律是实现铁路轨道经济维修的关键问题之一.根据轨道几何状态变化的特点,基于概率分布的基本思想,建立轨道不平顺状态推移矩阵.运用轨道不平顺状态推移矩阵计算各项轨道几何不平顺在不同时间点的推移变化规律,分析和评估轨道几何状态的现状及其发展趋势.结合大量沪宁线轨道几何不平顺数据的计算与分析表明:采用基于概率分布推移变化的方法能够很好地预测轨道几何状态的变化及其发展趋势.  相似文献   

2.
轨道不平顺严重威胁铁路行车安全和设备的使用寿命。研究轨道高低不平顺的变化特点和劣化规律对重载铁路轨道维修管理有重要指导作用。基于灰色区间预测建模理论,研究重载铁路轨道高低不平顺变化特点和劣化规律,预测轨道高低不平顺未来的发展情况。为验证预测模型的有效性,采用神朔铁路上行10个高低超限病害高发单元区段的共17个月的历史轨道高低不平顺检测数据进行验证。结果表明:该模型拟合和预测效果良好,对神朔铁路轨道的养护维修管理有着重要意义。  相似文献   

3.
车轮磨耗和轨道不平顺具有随机特征。基于车轮圆周磨耗的概率特征及高斯分布假设,将车轮型面离散化,形成车轮型面磨耗量的概率反演方法;同时,基于轨道不平顺概率模型,实现轨道不平顺在不同幅-频状态下的遍历随机模拟。结合车辆-轨道耦合动力学理论和概率方法,建立考虑车轮踏面磨耗-轨道随机不平顺耦合作用的车辆-轨道随机分析模型,并用一类概率密度演化方程解决模型的概率密度传递问题。此模型能较好分析车辆-轨道系统在不同车轮型面磨损及线路随机不平顺联合作用下的动力响应分析及可靠度计算问题。  相似文献   

4.
高速铁路轨道不平顺幅值控制研究   总被引:2,自引:0,他引:2  
研究目的:快速、舒适和安全是高速铁路得以实现的三大要素.由于高速铁路列车与轨道的相互作用很复杂,轨道几何形位难控制,从而造成轨道与设计线形的变化,出现轨道几何不平顺,反过来又会影响列车行驶的安全和舒适度.本文通过建立列车垂向振动整车模型,考虑轨道结构的弹性,以轨道不平顺值作为激励,建立运动方程.用变换矩阵法求解系统的刚度、阻尼、质量矩阵,以Newmark积分法经matlab编程逐步求解.提出车体垂向加速度和轨道高低不平顺幅值.研究结论:通过建立整车模型和对运动方程的求解,探讨了轨道高低不平顺对列车垂向加速度的影响;通过与国内外相关标准的比较,提出在时速300 km/h时应满足的轨道最大高低不平顺幅值,即:当车体垂向加速度满足不平顺舒适度值0.15 g时,轨道高低不平顺幅值应控制在8 mm以内;满足计划维修目标值0.25 g时,轨道高低不平顺幅值应控制在14 mm以内;满足安全管理目标值0.35 g时,轨道高低不平顺幅值应控制在19 mm以内.  相似文献   

5.
轨道不平顺是引起车辆振动的主要激励源。深入分析轨道高低不平顺与车体垂向加速度关联关系动态,掌握轨道结构传递特性,对科学评价车辆、轨道的服役状态及精准指导线路养护维修具有重要意义。基于系统辨识理论,以我国高速综合检测列车车载检测系统在一高速铁路上的实测轨道不平顺及车体垂向加速度样本数据为基础,通过平均周期图谱法计算检测数据功率谱密度及其相干函数,用状态空间方法构建长波轨道高低不平顺与车体垂向加速度之间的传递模型,并用关联模型传递函数及实测数据对所建模型进行验证。结果表明:模型预测的车体垂向加速度与相应实测数据有较强的线性相关性;利用合理阶数的状态空间模型,能够有效辨识长波轨道高低不平顺与车体垂向加速度之间的传递关系。  相似文献   

6.
郑武线轨道不平顺的相关性分析   总被引:1,自引:1,他引:0  
根据轨道不平顺相关函数的数据处理方法,基于郑武线轨道不平顺实测数据,对郑武线轨道不平顺的相关性进行分析,得出郑武线轨道高低、方向及水平不平顺的相关函数的具体表达式;此外,得出郑武线轨道水平不平顺状态最差,方向不平顺次之,高低不平顺相对较好;郑武线轨道高低、方向及水平不平顺彼此独立,因而可将某单一不平顺或几种不平顺组合作为车-轨系统振动分析激扰。  相似文献   

7.
针对高速铁路简支梁桥上有砟轨道梁端周期不平顺的形成机理及演变规律开展研究,重点分析环境温度对轨道周期不平顺的影响规律,并提出一种能快速检测有砟轨道枕下道床支承状态的方法 (BDS法)。结果表明:环境温度荷载引起的梁端道砟滑移流变会导致梁端道床支承刚度不足,引起轨枕局部空吊,导致梁端轨道高低周期不平顺,且环境温度变化量越大,梁端轨道高低不平顺变化量越大;32 m简支梁有砟轨道梁端周期不平顺会引起脱轨系数最大值增加25.4%,平均值增大11.9%,轮重减载率最大值增大178.68%,平均值增大130.27%。BDS法可实现枕下道床支承状态的快速无损检测,可与小型捣固机配合对高铁有砟轨道梁端周期不平顺进行整治。  相似文献   

8.
对轨道不平顺进行预测可以监控轨道质量状态的发展,合理安排养修计划,降低养修成本,保证线路安全性和平顺性,同时也是开发和研究轨道辅助决策系统的关键性技术。因此,预测轨道不平顺的发展规律是近代轨道力学的基本课题,一直是国内外研究的重点。一般来说,轨道不平顺的预测从需求上可分为局部轨道不平顺预测和区段轨道不平顺预测。局部轨道不平顺预测偏重对轨道个别  相似文献   

9.
用于铁路轨道不平顺预测的综合因子法   总被引:11,自引:1,他引:10  
根据轨道结构存在的不平顺特征及其形成原因,提出基于数字统计理论、信号处理理论和轨道不平顺检测数据的综合因子法,对各类轨道不平顺的发展趋势进行预测,为铁路线路的维修提供参考依据。方法的核心思想是基于对同一地段轨道不平顺变化规律相近的认知,即轨道在线路脆弱的地方会更脆弱,在不平顺幅值较大的地方其不平顺发展也相应较大。综合考虑影响轨道不平顺发展的众多因素,如轨道系统各部件的材料影响、铁路施工以及各种运营条件、环境因素等,将这些影响因素共同作用后的整体效果反映在构建的预测模型中,给出相应的综合因子和随机量的参数矩阵,并建立轨道不平顺管理的分级概念。计算结果表明,综合因子法能够较好地预测轨道不平顺的变化。  相似文献   

10.
向俊  赫丹  曾庆元 《铁道学报》2007,29(4):64-69
研究高速列车-板式轨道时变系统竖向振动。高速列车(以1动+4拖为例)中的动车及拖车均离散为具有二系悬挂的多刚体系统。针对无砟轨道(以板式轨道为例)的结构特点,提出横向有限条与无砟轨道板段单元分析模型。考虑轮轨竖向位移衔接条件,基于弹性系统动力学总势能不变值原理及形成系统矩阵的“对号入座”法则,建立了此系统竖向振动矩阵方程,采用Wilson-θ法求解。比较了钢轨与轨道板竖向位移的静、动态响应,结果接近。得出200 km/h车速下此系统竖向振动响应时程曲线,计算波形及量值均符合物理概念。分析车速及轨道高低不平顺对此系统竖向振动响应的影响,此系统竖向振动响应随车速及轨道高低不平顺的增大而增大。计算结果表明,本文提出的模型正确、可行。  相似文献   

11.
根据轨道几何不平顺的发展特性,在灰色预测理论的基础上,考虑模型参数随时间的变化,并优化背景值,建立以轨道几何不平顺检测数据为时间序列的非等时距灰色时变参数模型。为更好地描述轨道几何不平顺影响因素间复杂的函数关系,提高模型拟合和预测精度,基于残差分析引入周期性函数,对模型进行组合修正。应用此模型对轨道质量指数TQI数据进行分析预测,并对其精度进行检验。结果表明:模型能较好地反映轨道质量随时间发展的随机波动特征,拟合、预测精度高,适合进行中长期预测,可为了解和掌握轨道质量状态的发展规律提供新的方法。  相似文献   

12.
为了明确千米级大跨度桥轨道不平顺状态的分布规律,以某千米级大跨度桥上线路轨道不平顺检测数据为例,分析了动态和静态高低、轨向及轨距不平顺的时域分布特征,并进行了相关性分析,确定了动态和静态波形匹配参数,在此基础上提出了移动窗相关系数的里程匹配算法;给出了基于尺码法的轨道不平顺分形维数计算流程,分析了短波、中波和长波区段的动态和静态轨道不平顺分形维数及其分布规律特征。结果表明:以轨距作为对准参数项,采用滑动相关系数法可以实现动态与静态不平顺数据的有效对准;高低不平顺的分形维数可以作为诊断线路道砟服役状态的有效工具;大跨度桥的轨向及高低不平顺长波成分稳定,不因轮载动态作用而显著变化。  相似文献   

13.
对轨道几何不平顺发展趋势进行预测,有助于指导工务部门适时维修,降低养护维修成本。根据某高速铁路路桥过渡段沉降区近5年的检测数据,运用轨道几何不平顺百天变化率预测模型,对沉降引起的高低不平顺即轨面沉降不平顺发展趋势进行预测,并与实测值进行对比,同时进行误差分析,结果表明,短期预测效果较好,能够满足工务维修计划制定的需要。结合维修记录,综合分析高低不平顺及车体垂向加速度幅值变化情况,结果表明,不同维修方式对轨面沉降不平顺发展规律的影响不同,工务部门可以根据对历史维修数据的分析确定相应的维修方式。  相似文献   

14.
客运专线新建线路轨道不平顺功率谱分析   总被引:9,自引:2,他引:7  
通过对新建铁路轨道不平顺谱密度的分析,可以了解轨道平顺状态,有利于指导轨道施工和线路养护等作业。以秦沈客运专线轨检车实测轨道不平顺数据为统计样本,基于样本平稳性检验,采用FFT方法进行样本空间谱的估计,并由MATLAB编程得到轨道不平顺谱密度。基于轨道高低不平顺样本的总体平均,对所得到的谱密度进行频率平滑,并与我国一级铁路干线的谱密度曲线进行了对比分析:在此基础上,对秦沈客运专线的轨道状态进行了评估。  相似文献   

15.
轨道刚度检测是识别轨道弹性不良区段,评估轨道、桥梁和路基等结构动力性能的关键技术之一。为解决现有轨道弹性状态检测方法在检测效率与检测投入之间的不平衡,基于周期性动静态检测数据,提出基于动静态轨道几何不平顺差异的轨道弹性状态检测方法。此外,为解决弹性不良区段静态调整与有载不平顺不匹配问题,充分发挥动态检测数据的作用,提出基于动态数据的轨道弹性不良区段平顺性调整方法。通过刚度加载车试验和现场复核验证基于动静态高低不平顺峰值差来评判轨道弹性状态的有效性,在分析11条典型有砟轨道线路的动静态高低不平顺差异特征的基础上,提出动静态高低不平顺差超过2 mm的区段即可以判定存在轨道弹性不良病害。基于某条弹性不良线路区段的动态检测数据,采用本文提出的平顺性调整方法指导人工起道作业,结果表明动态高低不平顺幅值和标准差分别降低42%、51%,波长为32 m的周期性不平顺特征也得到明显改善。  相似文献   

16.
轨道不平顺谱是表征轨道不平顺幅频特性的有效工具。目前,高速铁路轨道不平顺谱的研究主要聚焦在波长2 m及以上成分,甚少涉及轨面短波不平顺谱。基于大量无砟轨道高速铁路实测数据,研究轨面短波不平顺谱的表达函数及其与中长波轨道不平顺谱衔接的适应性。结果表明:两段幂函数能够很好地表征轨面短波不平顺谱。采用对数坐标系下的5阶多项式拟合全波段高低不平顺谱,实现中长波和短波成分在波长1~2 m范围内的平缓过渡。实测数据表明高速行车条件下,短波高低不平顺对轮轨垂向力及轴箱、构架和车体垂向加速度等指标均存在显著影响,全波段高低不平顺谱的建立对轮轨振动仿真分析、车辆和轨道结构设计以及轨道状态评估具有重要意义。  相似文献   

17.
研究目的:CRTSⅡ型轨道板在夏季高温天气易产生上拱变形,引起轨道板和砂浆层离缝及板间接缝伤损等病害,导致板长波段的轨道不平顺恶化,严重影响行车的舒适性和安全性。由于固定监测缺乏普适性,且成本较高,因此基于动态轨道不平顺检测数据间接监控轨道板状态具有一定的优势,本文研究提出细化轨道不平顺波长进行状态评估的方法,可有效地识别出存在轨道板变形伤损区段,较原有的评价方法在效率和准确性方面均有很大提高。研究结论:(1)由轨道不平顺时序波形、历史演变和频谱方法分析表明,轨道板拱起影响波长在5~6.5 m之间,部分高低峰值呈逐年增加趋势,说明部分结构状态逐年恶化;(2)通过有限元建模分析,运用相关系数和曲线拟合等方法,研究高低峰值和气温的关联关系,结果表明轨面高低峰值随温度的变化特性可以反映轨道板变形受温度影响的变化特性:轨道板变形与温度具有较强的相关性,呈现非线性增加特性;(3)设计滤波器提取轨道不平顺中的轨道板波长特征,进行合理分段处理,定义为轨道板状态指数,并根据统计特征得到评价阈值范围在0.5时,经地面复核测试可以识别出约为70%的病害位置;(4)本研究成果可为高速铁路轨道板结构状态评价和运营维护提供技术、理论和实践支撑。  相似文献   

18.
轨道不平顺的状态控制分析是保证高速铁路行车安全性的核心问题之一。从轮轨动力学角度建立行车安全性的极限状态方程,将轨道不平顺作为系统输入量、轮轨力作为输出量,采用响应面与轮轨动力学相结合的方法进行极限状态方程显示化求解。利用二次多项式响应面作为响应函数、中心复合选点法以及一次二阶矩法进行行车安全性的可靠性及失效概率的计算。通过实测轨道不平顺数据以及蒙特卡洛法进行实例分析与验证,结果表明:采用响应面与轮轨动力学相结合的方法可以有效地实现行车安全性状态的可靠性评估,且现有的轨道不平顺状态可以保证列车的安全运行。建议将概率分析因素纳入结构设计及日常线路维修中。  相似文献   

19.
针对轨道不平顺的发展,提出轨道质量指数(TQI)变化的线性预测模型.该模型使用平均法计算出一个适用于某一线路区段轨道不平顺的斜率 K 值,利用该 K 值建立线性预测模型,对轨道不平顺发展TQI值进行预测.影响轨道不平顺发展的因素复杂,不平顺的发展趋势表现出一种非线性变化的特点,俗称"浴盆型"曲线.提出改进的轨道质量指数TQI预测模型,即多阶段轨道不平顺线性预测模型(MPLM).  相似文献   

20.
某开通时间较短的高速铁路线路受连续降雨影响,路基沉降快速发展,导致部分区段轨道结构发生变形,使轨道不平顺幅值明显增加,引起车体振动加剧,对列车运行的安全性和稳定性造成影响。为了研究路基沉降引起的轨道不平顺对车体振动的影响,选取典型路基沉降区段连续4次动态检测数据进行时频特征分析,结合建立的车辆-有砟轨道空间耦合动力学仿真模型,研究路基沉降区段轨道不平顺和车体振动加速度之间的映射关系,获得了路基沉降不平顺波长和状态演变对车辆动力响应的影响规律。研究结果表明:降雨导致的路基沉降对高低不平顺和车体垂向加速度的影响显著,对轨向不平顺和车体横向加速度的影响较小;路基沉降区段的高低不平顺与车体垂向加速度幅值变化趋势和振动频率基本相同,42~70 m波长高低不平顺的幅值增加是造成车体垂向振动加剧的主要原因;依据仿真结果,路基沉降引起的高低不平顺幅值急剧增加会造成行车过程中局部轮轨垂向力显著减小,导致轮重减载率显著增加;对于速度等级250 km/h的线路,建议雨后重点盯控路基沉降点长波高低不平顺的变化,针对车体垂向振动加速度不良区段的养护维修作业,应着重调整42~70 m波长高低不平顺幅值,以保障车辆...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号