首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 457 毫秒
1.
泉州湾跨海大桥主桥为主跨400m的双塔分幅式组合梁斜拉桥,采用整体节段悬臂拼装架设,干拼法连接进行主梁节段施工。为研究结构参数对施工过程中结构响应的影响,指导施工控制,采用有限元法建立该桥计算模型,计算施工过程中桥塔弹性模量、钢梁弹性模量、桥面板弹性模量、钢梁重量、桥面板重量等参数对桥塔塔偏、主梁线形、桥面板应力和斜拉索索力的影响。研究结果表明,桥面板及钢梁重量对桥塔塔偏、主梁线形及斜拉索索力影响较大,钢梁弹性模量、桥面板弹性模量及桥面板重量则对混凝土桥面板应力有很大影响,施工过程中需重点控制敏感性参数。该桥采用基于分析结果确定的施工控制原则实施控制,主跨合龙后,成桥实测线形与理论线形、成桥实测索力与理论索力均满足施工控制目标值的要求。  相似文献   

2.
朱勤 《世界桥梁》2022,(6):35-42
某城市景观桥为(22+55+22) m空间斜靠式三跨拱梁组合桥,与河道斜交布置,结构造型新颖。钢梁立面位于凸曲线上,上游侧和下游侧主、副拱在平面上呈反对称结构,上、下游吊杆索力不对称,施工线形控制难度大,制造及安装精度要求高。采用“先梁后拱”施工方法,基于无应力状态法,建立有限元分析模型,确定钢梁和主、副拱及吊杆的无应力状态量,工厂制造严格按照监控指令线形进行。钢梁总体线形通过支架顶标高进行调节,确保钢梁处于无应力线形状态。钢梁节段之间通过匹配件进行锁定定位,确保节段拼装线形与无应力线形匹配。空间结构的主拱安装线形通过支架柱顶的调节装置进行调节,确保安装线形满足要求。全桥的焊接量较大,通过焊接工艺评定,不同的构件采用合适的焊接工艺和施焊顺序,严格控制钢梁的焊接变形。成桥实测线形和索力均满足设计和规范要求。  相似文献   

3.
为取得高精度的顶推施工槽形组合钢梁桥线形,提出采用传递矩阵法对顶推施工过程中各工况的线形进行预测与控制,选择节段间预拼角及梁段末端倾角作为线形控制参数,对顶推施工过程中各种线形状态之间的传递关系进行分析,并给出了描述拼装状态线形及顶推状态线形的传递方程表达式。以钱江八桥实际工程为对象,将所提出的方法应用于槽形组合钢梁顶推施工的线形控制,并对线形控制效果进行分析和评估。工程实践结果表明:测点线形误差为±1.0cm,成桥及安装状态等各工况的线形满足要求,采用的基于传递矩阵思想的理论方法可以实现对槽形钢梁顶推施工线形的高精度控制。  相似文献   

4.
南京长江三桥钢索塔施工测量技术   总被引:1,自引:1,他引:0  
南京长江三桥为我国首座采用钢索塔结构的特大型斜拉桥。针对机加工车间的钢索塔节段预拼装工艺流程和桥位现场的钢索塔拼装施工流程,研究了预拼装过程中的微型控制网建立、测量点选择、钢索塔节段温度测量、钢索塔轴线偏差等方面的测量技术和数据处理方法。根据钢索塔的施工流程,提出了钢索塔拼装控制网布设、拼装定位等测量与数据处理方案;通过预拼装测量获取钢索塔已预拼装节段的状态,指导了钢索塔后继节段加工与调整,为桥位施工现场钢索塔拼装提供数据和保证了钢索塔拼装的顺利进行。南京三桥钢索塔的各项竣工数据指标均优于钢索塔验收标准,说明所采用的钢索塔施工测量方法完全满足特大型桥梁钢索塔设计、施工的需要,可以为同类型的工程提供参考。  相似文献   

5.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

6.
马鞍山长江公路大桥左汊主桥为(360+2×1080+360) m的三塔两跨悬索桥,中塔采用钢-混叠合、塔梁固结门式结构,下塔柱为预应力钢筋混凝土结构,上塔柱为钢结构,钢塔共分21个节段,首节采用浮吊安装,标准节段长6 m ,最大起吊重达235 t ,采用塔吊进行安装。为确保钢塔线形满足要求,对影响钢塔安装精度因素进行分析,形成以控制钢塔制造质量为核心、钢塔首节段安装精度为基础的线形控制流程,对钢塔节段进行工厂制造控制和现场安装控制。工厂制造控制包括零部件加工、块体制作、节段组拼、端面机加工、预拼装;现场安装控制包括首节段安装、标准节段安装、横梁与钢塔的连接。实践表明,该桥采用以控制钢塔制造精度为核心的钢塔线形控制技术进行钢塔架设施工,施工过程中钢塔制造精度和安装精度满足要求,实现了钢塔线形控制的目的。  相似文献   

7.
为了实现对大跨度钢主梁斜拉桥高精度、高效率的施工控制,基于自适应无应力构形控制思想,推导了设计参数误差和钢主梁顶、底板焊缝收缩差对主梁安装线形的影响量调整公式,导出了主梁节段定位时温度影响的标高调整量公式,并在综合考虑此类影响因素的基础上建立了主梁节段精确定位的实时放样公式,最后将研究成果在荆岳长江公路大桥施工全过程中进行应用。结果表明:该方法能极大方便斜拉桥的施工与控制工作,提高其控制精度及效率。  相似文献   

8.
针对钢箱梁斜拉桥成桥目标线形的实现,以厦漳跨海大桥北汊主桥为例,提出基于无应力状态控制法理论的主梁预拱度取值、制造尺寸确定、预拼装线形计算及悬臂拼装控制方法.该桥为多跨连续半飘浮体系钢箱梁斜拉桥,采用桥梁结构设计系统SCDS2011建立桥梁有限元模型,求得钢箱梁设计预拱度;钢箱梁制造尺寸确定时考虑竖曲线和设计预拱度及梁体轴向压缩、弯矩转角的影响;以预拼装线形为基础计算得出每节段前、后控制点的坐标值进行预拼装;在钢箱梁悬臂拼装过程中进行线形控制时,考虑安装阶段的计算挠度及成桥状态与设计预拱线形的高程差.事实证明,采用该方法对钢箱梁斜拉桥进行成桥目标线形的控制取得了良好的施工精度.  相似文献   

9.
松原市天河大桥北汊主桥为(40+100+266+100+40)m双塔空间索面自锚式悬索桥,桥塔采用钢筋混凝土人字形结构,主梁分为混凝土加劲梁以及钢-混组合梁(由格构式钢梁上铺混凝土桥面板组成)两部分,主缆呈空间三维线形,全桥共51对吊索。桥塔采用液压自爬模施工,通过设置主动支撑以及预偏量控制塔身倾斜度;格构式钢梁采用以直代曲制作,边跨钢梁采用吊机原位吊装,中跨钢梁采用拼装平台上整节段拼装牵引滑移施工;主缆锚固系统位于加劲梁锚墩横梁上,采用厂内预制现场整体吊装施工;主缆架设采用PPWS施工方法,猫道采用预制吊装施工;针对可转动索夹以及球铰底座的特点,改变传统的体系转换临时吊索的使用顺序,达到吊索一次张拉成型。  相似文献   

10.
上海闵浦二桥主桥为独塔双索面连续钢板桁组合梁斜拉桥,跨径组合为251.4 m(主跨)+(147+38.25)m(锚跨),其主梁为全焊接结构,主梁施工采用工厂整节段预制,现场整节段安装的方法,节段预制在工厂先进行平面桁片拼装,再进行立体总拼,拼装时采用N+1匹配技术,现场吊装支架段采用1 200 t浮吊安装,标准段采用260 t步履式桥面吊机安装,钢梁节段在工地采用对接焊接施工.  相似文献   

11.
基于无应力状态法的悬臂拼装斜拉桥的线形控制   总被引:3,自引:3,他引:0  
余昆  李景成 《桥梁建设》2012,42(3):44-49
针对悬臂拼装斜拉桥的线形控制问题,以穗盐路斜拉桥为背景,提出基于无应力状态法理论以钢箱梁制造线形为目标,进行主梁线形控制的方法。该桥为对称独塔双索面塔梁固结体系,采用MIDAS Civil建立桥梁有限元模型,分析钢箱梁在不同施工临时荷载作用下的制造线形和安装线形。分析结果表明,该桥安装线形随施工临时荷载的不同而改变,制造线形是结构的稳定量,只要保证梁段的无应力状态量一定,则无应力线形是惟一的;实桥安装时按制造线形夹角进行安装,无论施工过程如何改变,最终成桥阶段的内力和位移与理想目标状态一致。  相似文献   

12.
悬索桥扁平钢箱梁顶推施工受力分析   总被引:1,自引:0,他引:1  
某3跨地锚式悬索桥加劲梁为扁平钢箱梁,钢箱梁跨径组成为(40+430+40)m,采用多点临时墩顶推施工。为了确保钢箱梁在顶推施工过程中结构安全,建立有限元计算模型对顶推施工过程进行整体和局部受力分析。计算结果表明临时墩支点高程设置形式、滑道支承形式和横向偏位等对钢箱梁受力影响较大。根据计算结果提出了钢箱梁顶推施工过程线形控制、临时墩反力控制及局部应力施工控制等参数以及相应控制措施。实际顶推施工结果表明钢箱梁受力及线形控制较好。  相似文献   

13.
大跨度钢-混凝土组合结构连续箱梁施工线形控制   总被引:2,自引:0,他引:2  
上海长江隧桥工程B4标钢-混凝土组合结构连续箱梁是国内最大的组合梁结构,采用梁场预制,浮吊安装的世界先进施工技术,组合梁设置了纵坡,并位于不同曲率半径的曲线上,线形控制非常复杂.介绍其钢梁节段拼装、整孔吊装段的总拼、钢-混凝土叠合、墩顶合龙等关键施工阶段的线形控制措施及效果.  相似文献   

14.
为使钢箱梁桥位焊接后能符合设计给定的线形,从预拼装阶段开始,控制各项工序的质量.钢箱梁的制造和预拼装可分为长线法和短线法.悬索桥的钢箱梁吊装时,钢箱梁的空间位置由主缆线形和吊索长度确定,钢箱梁吊装后其线形已经确定,不可能在吊装过程中或吊装后再行调整;而斜拉桥则在钢箱梁吊装时,通过施工监控逐个调整吊装梁段的索力、远点的标高和里程实现设计给定的线形.介绍斜拉桥钢箱粱吊装过程中吊装梁段的调整方法、合龙段吊装前后的注意事项.以西堠门大桥为例,说明钢箱梁桥位焊接施工期的监理要点.  相似文献   

15.
为了保证葑溪大桥的施工安全和质量,根据预应力混凝土斜拉桥悬臂浇筑和支架现浇非对称施工特点,建立施工控制计算模型,探讨影响主梁线形及斜拉索索力的因素,并制定相应控制措施,对主梁线形、内力、索力、牵索挂篮应力和变形进行有效监控.施工控制结果表明:成桥状态下,主桥轴线实测标高、桥梁应力状态、成桥索力均满足设计要求,挂篮在施工过程中的应力状态及变形情况与试验变化趋势基本一致.  相似文献   

16.
移动支架节段拼装造桥机施工技术   总被引:1,自引:1,他引:0  
小东川特大桥简支箱梁节段拼装施工采用下行式移动支架节段拼装造桥机.整孔简支箱梁在制梁场分节段预制,在进行梁部拼接施工时,先将造桥机纵移至需要拼接梁部的墩跨间,再将从制梁场运来的预制梁段吊运至造桥机腹内,安装在造桥机上,调整就位后,利用湿接缝组拼成整体,然后整跨张拉,完成整跨箱梁成梁作业.该施工方法快捷、安全,箱梁线形控制容易,已成功用于铁路桥梁施工.  相似文献   

17.
结构参数误差是斜拉桥施工控制过程中误差产生的重要来源.为分析结构各设计参数对桥梁成桥状态影响的敏感性,以江津观音岩长江大桥为背景,采用有限元法计算各设计参数对大跨度结合梁斜拉桥主梁成桥线形和主梁应力的影响.结果显示:主梁重量、拉索制造长度、桥面板重量和温差对该桥主梁成桥线形及主梁应力有显著影响;桥面板弹性模量和主梁弹性...  相似文献   

18.
晏敬东  陈强 《桥梁建设》2012,42(1):102-107
阳泉至盂县高速公路桃河特大桥跨石太铁路为(75+75)m预应力混凝土T形刚构桥,为减少桥梁施工对铁路安全运营的影响,T构采用高墩转体法施工.T构转体长度为109 m,转体高度为51.15 m,转体重量为150 MN.为确保施工精度及安全,对转盘与滑道的安装精度及T构线形与应力进行控制,通过在承台内预埋调节螺栓及高精度的控制测量,使滑道及转盘的安装误差控制在较小的范围;通过主梁预拱度设置、预压测量挂篮变形、T构自重控制、纵向预应力施工控制、桥面临时荷载控制、温度控制等措施,使梁体的应力状态和线形满足设计要求.  相似文献   

19.
陈家洲湘江大桥主桥为(40+68+4X100+68+40)m的8跨长联连续箱梁桥,合龙口多,体系转换复杂,施工监控难度大。采用有限元软件计算了主梁应力和变形,并对合龙方案进行了优化和参数分析,确定了先副跨后次边跨再中跨的对称合龙方案;对施工过程关键截面的应力及关键工况的线形进行监测,并将实测结果与计算值进行对比。结果表明:陈家洲大桥主桥主梁线形和结构内力均达到了设计要求,为类似连续梁桥的施工监控提供了依据。  相似文献   

20.
为建立高速铁路常用跨度桥梁设计理论和方法,进行该类桥梁设计参数、简支梁动力性能简化判定方法、桥梁线形控制技术及整孔箱梁的制造、运输、架设技术研究。研究结果表明,桥面宽13.0 m,腹板间距6.7 m左右时,箱梁顶板和腹板的受力较为合理;24 m3、2 m箱梁预应力传力长度分别为1.1倍、1.2倍梁高;时速350 km客运专线铁路桥32 m简支箱梁梁体基频限值为150/L。为保证桥梁线形,应控制结构使用阶段上、下缘应力差在4 MPa内,施加预应力时混凝土的强度和弹性模量应达到设计值,施加二期恒载的时间间隔为60 d。箱梁制造时,梁端隔墙采用变截面平顺过渡,并合理地设置温控参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号