首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Transportation systems serve important roles during emergencies, in particular for evacuations. However, efficient travel during these life-and-death scenarios can be adversely impacted by external conditions, such as unnecessary and unneeded travel. This research sought to enhance the understanding of the effects of these conditions by analyzing shadow evacuations, and their impact on regional traffic operations in megaregions, more broadly. The research was based on simulations of a range of hurricane evacuation threat scenarios in the Gulf of Mexico building upon prior study using TRANSIMS. These assessments are also targeted at what many assume could be worst case evacuation conditions and pushing the limits of current simulation modeling capability. Among the broader findings of this work was that shadow evacuation participation rates did not significantly impact the evacuation clearance times within mandatory evacuation areas of the megaregion as long as demand could be temporarily spread out. This finding does not, however, suggest that the shadow evacuations have no impact on evacuation processes. High rates of shadow evacuees can cause significant congestion if they are not able to exit critical routes before mandatory evacuees reach areas further away from the coast.  相似文献   

2.
Reversible traffic operations have become an increasingly popular strategy for mitigating traffic congestion associated with the directionally unbalanced traffic flows that are a routine part of peak commute periods, planned special events, and emergency evacuations. It is interesting that despite its widespread and long‐term use, relatively little is known about the operational characteristics of this form of operation. For example, the capacity of a reversed lane has been estimated by some to be equal to that of a normal lane while others have theorized it to be half of this value. Without accurate estimates of reversible lane performance it is not possible to confidently gauge the benefits of reversible roadways or model them using traffic simulation. This paper presents the results of a study to measure and evaluate the speed and flow characteristics of reverse‐flow traffic streams by comparing them under various operating conditions and locations. It was found that, contrary to some opinions, the flow characteristics of reverse‐flowing lanes were generally similar to normally flowing lanes under a variety of traffic volume, time‐of‐day, location, and type‐of‐use conditions. The study also revealed that drivers will readily use reversible lanes without diminished operating speeds, particularly as volumes increase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In modern cities, a rapid increase of motorcycles and other types of Powered Two-Wheelers (PTWs) is observed as an answer to long commuting in traffic jams and complex urban navigation. Such increasing penetration rate of PTWs creates mixed traffic flow conditions with unique characteristics that are not well understood at present. Our objective is to develop an analytical traffic flow model that reflects the mutual impacts of PTWs and Cars. Unlike cars, PTWs filter between cars, have unique dynamics, and do not respect lane discipline, therefore requiring a different modeling approach than traditional “Passenger Car Equivalent” or “Follow the Leader”. Instead, this work follows an approach that models the flow of PTWs similarly to a fluid in a porous medium, where PTWs “percolate” between cars depending on the gap between them.Our contributions are as follows: (I) a characterization of the distribution of the spacing between vehicles by the densities of PTWs and cars; (II) a definition of the equilibrium speed of each class as a function of the densities of PTWs and cars; (III) a mathematical analysis of the model’s properties (IV) an impact analysis of the gradual penetration of PTWs on cars and on heterogeneous traffic flow characteristics.The proposed model could contribute as an enabler for ‘PTW-aware’ future Cooperative Intelligent Transport Systems technologies and traffic regulations.  相似文献   

4.
Most traffic delays in regional evacuations occur at intersections. Lane-based routing is one strategy for reducing these delays. This paper presents a network flow model for identifying optimal lane-based evacuation routing plans in a complex road network. The model is an integer extension of the minimum-cost flow problem. It can be used to generate routing plans that trade total vehicle travel-distance against merging, while preventing traffic crossing-conflicts at intersections. A mixed-integer programming solver is used to derive optimal routing plans for a sample network. Manual capacity analysis and microscopic traffic simulation are used to compare the relative efficiency of the plans. An application is presented for Salt Lake City, Utah.  相似文献   

5.
Abstract

Limited specific evidence is available on the effectiveness of using contraflow as an evacuation traffic management tool. This study was conducted to determine the best combination of strategy options for evacuating Charleston, SC, along route I-26 during the event of a hurricane or other events. PARAMICS microscopic traffic simulator was used to evaluate the impact of each combination of evacuee response timing and traffic control strategy, such as contraflow, with respect to average vehicular travel time and evacuation duration. Analysis revealed the combination of management strategies that created the lowest evacuation durations and travel times for several types of anticipated evacuee responses. Furthermore, a proposed reconfiguration of the I-526/I-26 interchange for contraflow operations produced additional savings in travel times and evacuation durations. These findings support the use of all lanes for contraflow during all evacuations and provide justification to examine a possible reconfiguration of the I-526/I-26 interchange for use during evacuations.  相似文献   

6.
The notion of capacity is essential to the planning, design, and operations of freeway systems. However, in the practice freeway capacity is commonly referred as a theoretical/design value without consideration of operational characteristics of freeways. This is evident from the Highway Capacity Manual (HCM) 2000 in that no influence from downstream traffic is considered in the definition of freeway capacity. In contrast to this definition, in this paper, we consider the impact of downstream traffic and define freeway operational capacity as the maximum hourly rate at which vehicles can be expected to traverse a point or a uniform section of a roadway under prevailing traffic flow conditions. Therefore freeway operational capacity is not a single value with theoretical notion. Rather, it changes under different traffic flow conditions. Specifically, this concept addresses the capacity loss during congested traffic conditions. We further study the stochasticity of freeway operational capacity by examining loop detector data at three specifically selected detector stations in the Twin Cities’ area. It is found that values of freeway operational capacity under different traffic flow conditions generally fit normal distributions. In recognition of the stochastic nature of freeway capacity, we propose a new chance-constrained ramp metering strategy, in which, constant capacity value is replaced by a probabilistic one that changes dynamically depending on real-time traffic conditions and acceptable probability of risk determined by traffic engineers. We then improve the Minnesota ZONE metering algorithm by applying the stochastic chance constraints and test the improved algorithm through microscopic traffic simulation. The evaluation results demonstrate varying degrees of system improvement depending on the acceptable level of risk defined.  相似文献   

7.
An effective evacuation of buildings is critical to minimize casualties due to natural or anthropogenic hazards. Building evacuation models help in preparing for future events and shed light on possible shortcomings of current evacuation designs. However, such models are seldom compared or validated with real evacuations, which is a critical step in assessing their predictive capacities. This research focuses on the evacuation of a K-12 (kindergarten to 12th grade) school located within the tsunami inundation zone of Iquique, Chile. An agent-based evacuation model was developed to simulate the evacuation of approximately 1500 children and staff from the school during a global evacuation drill carried out for the entire city. The model simulates the motions of heterogeneous human agents, and the simulations were validated using video analysis of the real event. Resulting error estimations between predicted versus measured flow rates and evacuation times are 13.5% and 5.9%, respectively. The good agreement between the simulated and measured values can be attributed to the known distribution of students and staff at the start of the drill, and their known exposure to emergency preparedness protocols. However, the results presented herein show that this mathematical evacuation model can be used for logistical changes in the emergency planning.  相似文献   

8.
On the basis of real traffic and environmental data measured on German freeways, we studied common features of traffic congestion under the influence of severe weather conditions. We have found that traffic features [J] and [S] defining traffic phases “wide moving jam” (J) and “synchronized flow” (S) in Kerner's three‐phase theory are indeed common spatiotemporal traffic features. The quantitative parameters for both traffic phases [S] and [J] were investigated in a comparison of “ideal” weather conditions (good visibility and no precipitation) and severe weather situations (icy road, wind, precipitation, etc.). We showed spatiotemporal congested patterns in several space–time diagrams based on the Automatic Tracking of Moving Jams/Forecasting of Traffic Objects (ASDA/FOTO) model reconstruction for roadside detectors. A statistical study of traffic phase [J] parameters was presented, showing the average values and standard deviation of the quantities. Similarities and differences were analyzed, and some consequences for vehicular applications were discussed to cope with severe weather conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Oversaturation has become a severe problem for urban intersections, especially the bottleneck intersections that cause queue spillover and network gridlock. Further improvement of oversaturated arterial traffic using traditional mitigation strategies, which aim to improve intersection capacity by merely adjusting signal control parameters, becomes challenging since exiting strategies may (or already) have reached their “theoretical” limits of optimum. Under such circumstance, several novel unconventional intersection designs, including the well-recognized continuous flow intersection (CFI) design, are originated to improve the capacity at bottleneck intersections. However, the requirement of installing extra sub-intersections in a CFI design would increase vehicular stops and, more critically, is unacceptable in tight urban areas with closed spaced intersections. To address these issues, this research proposes a simplified continuous flow intersection (called CFI-Lite) design that is ideal for arterials with short links. It benefits from the CFI concept to enable simultaneous move of left-turn and through traffic at bottleneck intersections, but does not need installation of sub-intersections. Instead, the upstream intersection is utilized to allocate left-turn traffic to the displaced left-turn lane. It is found that the CFI-Lite design performs superiorly to the conventional design and regular CFI design in terms of bottleneck capacity. Pareto capacity improvement for every traffic stream in an arterial system can be achieved under effortless conditions. Case study using data collected at Foothill Blvd in Los Angeles, CA, shows that the new design is beneficial in more than 90% of the 408 studied cycles. The testing also shows that the average improvements of green bandwidths for the synchronized phases are significant.  相似文献   

11.
Fully automated vehicles could have a significant share of the road network traffic in the near future. Several commercial vehicles with full-range Adaptive Cruise Control (ACC) systems or semi-autonomous functionalities are already available on the market. Many research studies aim at leveraging the potential of automated driving in order to improve the fuel efficiency of vehicles. However, in the vast majority of those, fuel efficiency is isolated to the driving dynamics between a single follower-leader pair, hence overlooking the complex nature of traffic. Consequently fuel efficiency and the efficient use of the roadway capacity are framed as conflicting objectives, leading to fuel-economy control models that adopt highly conservative driving styles.This formulation of the problem could be seen as a user-optimal approach, where in spite of delivering savings for individual vehicles, there is the side-effect of the deterioration of traffic flow. An important point that is overlooked is that the inefficient use of roadway capacity gives rise to congested traffic and traffic breakdowns, which in return increases energy costs within the system. The optimisation methods used in these studies entail high computational costs and, therefore, impose a strict constraint on the scope of problem.In this study, the use of car-following models and the limitation of the search space of optimal strategies to the parameter space of these is proposed. The proposed framework enables performing much more comprehensive optimisations and conducting more extensive tests on the collective impacts of fuel-economy driving strategies. The results show that, as conjectured, a “short-sighted” user-optimal approach is unable to deliver overall fuel efficiency. Conversely, a system-optimal formulation for fuel efficient driving is presented, and it is shown that the objectives of fuel efficiency and traffic flow are in fact not only non-conflicting, but also that they could be viewed as one when the global benefits to the network are considered.  相似文献   

12.
Gehlot  Hemant  Sadri  Arif M.  Ukkusuri  Satish V. 《Transportation》2019,46(6):2419-2440

Hurricanes are costly natural disasters periodically faced by households in coastal and to some extent, inland areas. A detailed understanding of evacuation behavior is fundamental to the development of efficient emergency plans. Once a household decides to evacuate, a key behavioral issue is the time at which individuals depart to reach their destination. An accurate estimation of evacuation departure time is useful to predict evacuation demand over time and develop effective evacuation strategies. In addition, the time it takes for evacuees to reach their preferred destinations is important. A holistic understanding of the factors that affect travel time is useful to emergency officials in controlling road traffic and helps in preventing adverse conditions like traffic jams. Past studies suggest that departure time and travel time can be related. Hence, an important question arises whether there is an interdependence between evacuation departure time and travel time? Does departing close to the landfall increases the possibility of traveling short distances? Are people more likely to depart early when destined to longer distances? In this study, we present a model to jointly estimate departure and travel times during hurricane evacuations. Empirical results underscore the importance of accommodating an inter-relationship among these dimensions of evacuation behavior. This paper also attempts to empirically investigate the influence of social ties of individuals on joint estimation of evacuation departure and travel times. Survey data from Hurricane Sandy is used for computing empirical results. Results indicate significant role of social networks in addition to other key factors on evacuation departure and travel times during hurricanes.

  相似文献   

13.
The events of recent hurricane seasons have made evacuation a leading emergency management issue. In 1998 and 1999, Hurricanes Georges and Floyd precipitated the two largest evacuations in the history of the United States and perhaps, its two largest traffic jams. In response to the problems experienced during these events, many state departments’ of transportation have begun to take a more active role in the planning, management, and operation of hurricane evacuations. This is somewhat of a departure from prior practice when emergency management officials directed these tasks almost exclusively. Since the involvement of transportation professionals in the field of evacuation has been a fairly recent development, many of the newest practices and policies have only been used once, if ever. They also vary widely from state-to-state. To determine what the latest policies and strategies are and how they differed from one location to another, a national review of evacuation plans and practices was recently undertaken. The study was carried out from a transportation perspective and included both a review of the traditional transportation literature and a survey of department of transportation and emergency management officials in coastal states threatened by hurricanes. This paper highlights the findings of the survey portion of the study. It focuses mainly on current state practices, including the use of reverse flow operations and intelligent transportation systems. It also summarizes current evacuation management policies, methods of information exchange, and decision-making criteria. This paper presents the general similarities and differences in practices and gives particular attention to unique, innovative, and potentially useful practices used in individual states.  相似文献   

14.
This study aims to develop work zone speed‐flow and capacity models, which incorporate work zone configuration factors including the number of work zones, geometrical alignment, work zone speed limit, and work zone length. On the basis of the traffic data from six work zone sites with various work zone configurations, two nonlinear traffic speed and flow models including work zone configuration factors are developed for the uncongested and congested traffic conditions, respectively. A work zone capacity model is proposed on the basis of the two models. The three models can further be used to examine the effects of work zone configuration factors on the speed‐flow relationship and capacity at work zones. Results show that traffic speed, traffic flow, and work zone capacity increase with the posted speed limit. Traffic speed under uncongested conditions decreases with the geometric alignment, the number of work zones, work zone length, and heavy vehicle percentage. Under congested conditions, the increase of the number of work zones is found to exhibit a larger negative impact on the traffic flow than the increase of geometric alignment. The number of work zones is also found to have the largest negative impacts on work zone capacity, followed by the geometric alignment. Short work zone length exhibits a relatively minor contribution to increasing work zone capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates pedestrian crowd tactical‐level decision making during emergency evacuations. Of particular interest is crowd exit‐choice behaviour. Two sources of stated choice data are collected and combined. One data set is derived from an experiment linked to a real‐life exit choice experience of participants (in a non‐evacuation setting). We examine aspects that have often been taken for granted in the literature in connection with egress behaviour of crowds during emergencies. We quantify evacuees' trade‐off between “distance”, “density”, “exit visibility” and “directional density” as well as the interactive effect between exit visibility and tendency to follow others. A comprehensive random‐utility analysis is conducted ranging from traditionally practiced models to the state‐of‐the‐practice methods such as random‐coefficient nested logit. Our findings suggest that (i) unless evacuees face certain levels of uncertainty in the escape environment; flows of crowd are unlikely to be followed. Otherwise, most evacuees perceive other individuals as potential sources of congestion and extra delay (generalisation to situations where crowd is completely unfamiliar with the egress geometry, however, may require careful scrutiny). (ii) Evacuees mostly prefer visible exits over the exits whose congestion level is unknown to them (i.e. the tendency to minimise ambiguity). (iii) The presence of attribute uncertainty (e.g. exit visibility) significantly changes the impact of observing decisions of others on each individual choice maker. We also found out that (iv) spatial distribution of exits has a significant influence on evacuees' decisions (presenting itself in the form of violating the IIA assumption). (v) The marginal weights that different individuals place upon attributes of exits are significantly heterogeneous. (vi) There is meaningful correlation between certain utility weights of individual evacuees. These behavioural findings can provide significant behavioural insight essential for safe evacuation planning and accurate forecast of evacuees' behaviour. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Efficient planning of Airport Acceptance Rates (AARs) is key for the overall efficiency of Traffic Management Initiatives such as Ground Delay Programs (GDPs). Yet, precisely estimating future flow rates is a challenge for traffic managers during daily operations as capacity depends on a number of factors/decisions with very dynamic and uncertain profiles. This paper presents a data-driven framework for AAR prediction and planning towards improved traffic flow management decision support. A unique feature of this framework is to account for operational interdependency aspects that exist in metroplex systems and affect throughput performance. Gaussian Process regression is used to create an airport capacity prediction model capable of translating weather and metroplex configuration forecasts into probabilistic arrival capacity forecasts for strategic time horizons. To process the capacity forecasts and assist the design of traffic flow management strategies, an optimization model for capacity allocation is developed. The proposed models are found to outperform currently used methods in predicting throughput performance at the New York airports. Moreover, when used to prescribe optimal AARs in GDPs, an overall delay reduction of up to 9.7% is achieved. The results also reveal that incorporating robustness in the design of the traffic flow management plan can contribute to decrease delay costs while increasing predictability.  相似文献   

17.
Vehicle-to-vehicle (V2V) communications under the connected vehicle context have the potential to provide new paradigms to enhance the safety, mobility and environmental sustainability of surface transportation. Understanding the information propagation characteristics in space and time is a key enabler for V2V-based traffic systems. Most existing analytical models assume instantaneous propagation of information flow through multi-hop communications. Such an assumption ignores the spatiotemporal relationships between the traffic flow dynamics and V2V communication constraints. This study proposes a macroscopic two-layer model to characterize the information flow propagation wave (IFPW). The traffic flow propagation is formulated in the lower layer as a system of partial differential equations based on the Lighthill-Whitham-Richards model. Due to their conceptual similarities, the upper layer adapts and modifies a spatial Susceptible-Infected epidemic model to describe information dissemination between V2V-equipped vehicles using integro-differential equations. A closed-form solution is derived for the IFPW speed under homogeneous conditions. The IFPW speed is numerically determined for heterogeneous conditions. Numerical experiments illustrate the impact of traffic density and market penetration of V2V-equipped vehicles on the IFPW speed. The proposed model can capture the spatiotemporal relationships between the traffic and V2V communication layers, and aid in the design of novel information propagation strategies to manage traffic conditions under V2V-based traffic systems.  相似文献   

18.
Highway traffic flow phenomena involve several complex and stochastic variables with high interdependencies. The variations in roadway, traffic and environmental factors influence the traffic flow quality significantly. Capacity analysis of road sections under different traffic and geometric conditions need to quantify the vehicles of widely varying characteristics to a common and universally acceptable unit. Passenger car unit (PCU) is the universally adopted unit of traffic volume, keeping the passenger car as the ‘standard vehicle’ with reference to its static and dynamic characteristics; other vehicles are expressed to its equivalent number in terms of PCUs. The studies carried out in this aspect represent the dynamic nature of impedance caused by a vehicle while moving through a traffic stream. The PCU values recommended by the Highway Capacity Manual are widely applied in many countries; however, their applicability is highly under debate because of the variations in prevailing local traffic conditions. There are several factors that influence the PCU values such as traffic, roadway, vehicle, environmental and control conditions, etc. Apart from vehicular characteristics, the other two major factors that influence the PCU of vehicles are the following: (i) road width and (ii) traffic volume. In this study, estimation of PCU values for the different types of vehicles of a highly heterogeneous traffic on 7.5‐ and 11.0‐m‐wide roads, using micro‐simulation technique, has been dealt with. It has been found that the PCU value of a vehicle type varies significantly with variation in road width and traffic volume. The results of the study indicate that the PCU values are significantly influenced by the said two factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In order to account for variations in traffic composition during traffic analysis, passenger car equivalent (PCE) factors are used to convert flow rates of various vehicle classes into flow rates in terms of passenger car units (PCUs). Earlier studies have developed various methods to estimate PCE values but only a few of them are based on uninterrupted traffic flow, particularly for flow regimes with heterogeneous traffic where differential (lower) speed limits are imposed on commercial vehicles. This paper proposes a lane-harmonisation approach, which leverages on the high variation in traffic composition across the lanes, to estimate PCE factors for urban expressways. Multiple linear regression is used and the PCE factors obtained for motorcycles, light goods vehicles, and heavy goods vehicles are 0.65, 1.53, and 2.75, respectively. The estimated capacity flow rate after the application of the obtained PCE factors is around 2200 PCUs per hour per lane.  相似文献   

20.
Many accidents occurring at signalized intersections are closely related to drivers’ decisions of running through intersections during yellow light, i.e., yellow-light running (YLR). Therefore it is important to understand the relationships between YLR and the factors which contribute to drivers’ decision of YLR. This requires collecting a large amount of YLR cases. However, existing data collection method, which mainly relies on video cameras, has difficulties to collect a large amount of YLR data. In this research, we propose a method to study drivers’ YLR behaviors using high-resolution event-based data from signal control systems. We used 8 months’ high-resolution data collected by two stop-bar detectors at a signalized intersection located in Minnesota and identified over 30,000 YLR cases. To identify the possible reasons for drivers’ decision of YLR, this research further categorized the YLR cases into four types: “in should-go zone”, “in should-stop zone”, “in dilemma zone”, and “in optional zone” according to the driver’s location when signal turns to yellow. Statistical analysis indicates that the mean values of approaching speed and acceleration rate are significantly different for different types of YLR. We also show that there were about 10% of YLR drivers who cannot run through intersection before traffic light turns to red. Furthermore, based on a strong correlation between hourly traffic volume and number of YLR events, this research developed a regression model that can be used to predict the number of YLR events based on hourly flow rate. This research also showed that snowing weather conditions cause more YLR events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号