首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
为了保障高速列车的安全可靠运行,文章以存在未知扰动和输入时滞的高速列车制动系统为被控对象,设计了新的高速列车制动系统模型参考自适应控制策略,实现了对给定速度曲线的渐近跟踪。首先,通过分析高速列车制动系统的原理和动态特性,建立了存在扰动和时滞的高速列车制动系统状态空间模型;其次,充分利用模型参考自适应控制善于处理系统不确定性和外界扰动的能力,结合状态预测,设计了状态反馈控制器,使其在存在未知扰动和输入时滞时仍能实现对给定速度曲线的渐近跟踪;最后基于CRH380AL型高速列车在济南—青岛段的数据开展仿真验证,仿真结果表明文章设计的高速列车制动控制系统具有理想的稳定和渐近跟踪特性,能克服未知参数和有界扰动的影响,具有良好的鲁棒性。  相似文献   

2.
为保证高速列车的安全高效运行,设计一种基于多模型方法的高速列车故障诊断与调节策略,实现了对未知牵引电机故障的准确诊断和给定速度曲线的渐近跟踪。首先,通过分析常见的牵引电机故障,建立故障模式集,得到每种故障模式下的高速列车参数化模型;再基于每种故障模式下的参数化模型设计自适应估计器,得到估计器集,并基于估计误差设计性能损失函数进行高速列车牵引电机自适应故障诊断;最后根据诊断出的故障模式和大小等信息设计高速列车自适应故障调节控制器,保证系统稳定和对给定速度曲线的渐近跟踪。仿真结果表明,设计的高速列车自适应故障诊断与调节策略能有效地实现对未知牵引故障的诊断和补偿。  相似文献   

3.
针对执行器故障下高速列车的速度和位移跟踪控制问题,考虑模型参数的不确定性,引入自适应控制技术,设计了列车的自适应容错跟踪控制器.该控制器不依赖于列车模型参数的先验知识,不需要故障检测与诊断设备,可以有效克服列车模型参数未知以及执行器故障的影响,实现执行器故障下高速列车对目标速度和位移曲线的精确跟踪.基于Lyapunov稳定性理论证明了闭环系统的稳定性.仿真结果说明该控制器具有良好的容错跟踪控制能力.  相似文献   

4.
针对高速列车在外部干扰下的速度控制问题,本文提出基于Koopman算子的高速列车高维线性模型的建模方法,并设计一种结合扩张状态观测器(ESO)与基于Koopman算子的模型预测控制(K-MPC)的复合控制器(ESO-K-MPC)。利用扩展动态模式分解算法来近似无限维线性Koopman算子,建立具有动态非线性特性的高速列车动力学高维线性模型;引入模型预测控制,设计扩张状态观测器,对系统总扰动进行估计与补偿,构建基于ESO-K-MPC的高速列车速度控制系统,再设计控制器与控制算法;结合CRH3列车参数和郑西高铁华山北站—西安北站实际线路数据,分别在没有扰动和白噪声干扰下对设计的控制方法与算法进行仿真研究。仿真结果表明:基于Koopman的高速列车建模对位移与速度的预测精度相比于线性状态空间模型分别提高了83.86%与87.40%;ESO-K-MPC可以准确估计与补偿高速列车运行中受到的干扰,控制输出曲线与期望曲线几乎重叠,实现了列车运行期望曲线的高精度跟踪。  相似文献   

5.
为实现高速列车黏着控制中对期望蠕滑速度的精确跟踪,提出了一种新的蠕滑速度跟踪控制方法.首先考虑牵引/制动动态建立了列车黏着控制系统动力学模型,并将其描述为一个串级非线性系统;然后采用动态面控制方法,并引入自适应技术估计列车模型参数和系统集总不确定性上界,设计了基于自适应动态面的高速列车蠕滑速度跟踪控制策略.所设计的控制...  相似文献   

6.
为解决高速列车运行过程中因轨面情况改变,导致列车没有达到最大黏着利用而出现空转或滑行等问题,设计了一种基于最大黏着系数的滑模自抗扰(SM-ADRC)黏着控制器;考虑轮轨间黏着特性的复杂、时变与非线性等特点,基于黏着机理分析,建立了轮轨间牵引系统的力学模型;采用极大似然估计(MLE)方法对不同轨面的相关参数进行辨识,计算了当前轨面的最大黏着系数,保证列车始终能达到最大黏着利用;通过引入滑模算法改进了自抗扰控制(ADRC)中非线性误差反馈控制律部分,设计了一种SM-ADRC黏着控制算法,利用Levant跟踪微分器减小初始跟踪误差,利用扩张状态观测器(ESO)估计和补偿系统总的外部扰动,由滑模控制提高系统的鲁棒性;采用MATLAB软件对CRH380A型高速列车进行仿真,在轨面情况改变时,由SM-ADRC黏着控制器控制列车跟踪设定速度,并将其与比例积分微分(PID)控制器、滑模控制器、ADRC的仿真结果进行对比。仿真结果表明:干燥轨面的最大黏着系数是0.160,16 s时辨识出真值;潮湿轨面的最大黏着系数是0.106,18 s时辨识出真值;ADRC的速度跟踪误差范围为±1 km·h-...  相似文献   

7.
针对高速列车自动驾驶系统受到时变外部扰动和受限状态的情况,提出一种基于迭代学习控制的自适应控制算法. 基于Lyapunov 函数,利用列车运行过程中的状态偏差,推导出自适应迭代学习控制律和参数学习更新律. 构造类Lyapunov 函数的复合能量函数,通过迭代域的差分,证明其差分负定性和收敛性. 采用所提控制算法对列车跟踪性能进行计算机仿真和实例仿真验证,结果表明,所提出的自适应迭代学习控制算法对列车期望曲线跟踪具有较高的精度和较快的收敛速度,能够在较短的迭代次数实现对期望曲线的精确跟踪.  相似文献   

8.
为提高汽车列车路径跟踪性能,结合模型预测控制和最优曲率预瞄控制设计了路径跟踪控制器。在曲线部分采用模型预测控制以减小横向跟踪误差,在直线部分采用最优曲率预瞄控制来提高行驶稳定性,基于TruckSim/Simulink建立联合仿真模型并进行了仿真分析。结果表明,与对标车型自带路径跟踪控制器相比,在单移线工况下,采用综合控制器的汽车列车轨迹跟踪误差减少了60%以上,稳定性指标改善了7%。  相似文献   

9.
针对动车组运行过程中存在非线性扰动、参数时变等问题,以提高动车组的速度跟踪精度和乘客舒适性要求为目标,提出了一种基于预测控制的高速动车组迭代学习控制方法;通过采集动车组先前运行过程中的输入输出数据,使用带遗忘因子的最小二乘法实时辨识广义预测控制(GPC)中的预测模型参数并计算预测输出,根据以往过程的平均模型误差修正该预测输出,利用修正后预测输出引出迭代学习控制律,在线实时计算得到新的控制量,实现动车组速度跟踪;采用修正后预测输出设计二次型迭代学习控制律,通过充分学习列车系统的重复性特性来解决传统比例积分微分(PID)型迭代学习参数整定难、收敛速度慢和鲁棒性差等问题,并给出算法的收敛性证明;以实验室配备的CRH380A型动车组半实物仿真平台对该方法进行了测试,建立了列车的三动力单元模型,使其跟踪设定速度曲线,并与一些传统算法进行对比。仿真结果表明:在第8次迭代过程,基于预测控制的高速动车组迭代学习控制方法得到的动力单元速度与其设定的速度和加速度误差分别在0.3 km·h-1和0.5 m·s-2以内,且变化平稳,其性能优于PID、GPC和P型迭代...  相似文献   

10.
混合动力列车电源系统控制策略   总被引:1,自引:1,他引:0  
为了实现混合动力列车的计算仿真,建立混合电源系统模型,并提出一种混合电源系统控制策略.在此基础上,通过对混合电源系统与列车纵向动力学系统的耦合分析,给出了基于该电源系统控制策略的列车运行目标速度曲线计算算法.利用MATLAB/Simulink对系统建模,对列车在某线路上的运行过程进行了仿真.仿真结果表明,系统控制策略能够满足列车的运行性能,列车自动控制(ATC)系统能够精确的控制列车跟踪计算的目标速度曲线运行,混合电源回收了41%的再生制动能量, 控制策略和目标速度曲线计算算法达到了设计目标.   相似文献   

11.
针对船舶航向控制非线性系统模型中存在的不确定性和外界干扰的影响,采用动态面控制算法设计了一种鲁棒自适应控制器。由于在反步法设计过程中加入了一阶低通滤波器使得该方法无需对模型非线性多次微分,因而设计方法简单。所设计的鲁棒自适应控制器不仅能保证闭环系统的半全局渐近稳定,使得输出渐进跟踪期望轨迹;而且,跟踪误差可以通过控制器的设计参数加以调整。以中远集装箱船COSCO Shanghai号为例进行仿真研究,结果证明所设计的控制器是有效的。  相似文献   

12.
为提高城市轨道交通列车自动驾驶(automatic train operation,ATO)系统跟踪给定运行曲线的精度,基于子空间辨识方法,利用列车运行的历史数据,建立与实际运行状态相吻合的非线性子空间预测控制模型,设计子空间预测控制器,实现模型辨识数据和参数在线更新.运用MATLAB软件对比分析传统动力学模型与子空间预测控制模型的跟踪能力.结果 表明:子空间预测控制模型在速度、位移、加速度的跟踪精度上有明显优势,牵引/制动特性更加缓和.子空间预测控制模型可以保证列车运行安全、准时,并提高乘客乘坐舒适性.  相似文献   

13.
为解决动车组制动过程中电制动与空气制动切换时控制模型参数变化和空气制动延时大的问题, 以提高动车组停车的精确性, 提出了一种改进模糊PID-Smith控制器; 通过分析动车组制动过程中单个车厢的力学模型, 考虑列车制动过程的特点, 建立了关于运行速度和制动力的二阶纯延时传递函数; 将离散化的二阶纯延时传递函数与单个车厢的力学模型结合, 建立了动车组多质点控制模型, 并分析了该控制模型的特点; 提出了一种改进的模糊PID-Smith控制器, 通过引入Smith预估控制器解决了动车组制动过程中空气制动系统延时大的问题, 使用递推最小二乘法在线辨识了模型参数, 以解决动车组制动过程中电制动切换到空气制动时的模型参数变化问题; 采用模糊PID控制器代替Smith预估控制器中的PID部分, 解决了PID参数整定难和鲁棒性差的问题; 采用MATLAB软件对CRH380A型高速动车组进行仿真, 在不同进站速度、不同减速度和不同程度干扰下, 使控制器控制动车组跟踪设定速度, 并与模糊PID控制器的结果进行对比。仿真结果表明: 改进模糊PID-Smith控制器得到的动力单元速度与其设定速度的误差在0.4 km·h-1以内, 而模糊PID控制器的误差在1.0 km·h-1以内; 采用提出控制器得到的停车误差在0.3 m以内, 而模糊PID控制器的停车误差在1.5 m以内; 提出的控制器满足高速动车组运行过程中停车误差小于0.3 m的要求。   相似文献   

14.
高速列车运行环境复杂多变,现有的给定运行速度目标曲线主要考虑列车运行的安全性和正点性,难以改善列车的其他运行性能。为了满足高速列车日益增加的行车需求,并改善列车的运行性能,针对安全、节能、正点及舒适多个目标,考虑轮轨间最优黏着,提出一种改进的多目标运行速度优化方法。首先,在满足区间限速以及列车动力学模型约束的前提下,建立安全、节能、正点、舒适4个评价指标,构成高速列车运行过程多目标优化模型;其次,在节能模型中考虑轮轨间黏着的影响,优化牵引/制动力使得其保持在最优黏着范围内,节约运行能耗;最后,采用基于参考点的非支配排序的优化算法(NSGA-Ⅲ)对多目标运行速度曲线进行优化。对真实线路的仿真验证表明,本文提出的考虑轮轨黏着的优化效果显著提高,尤其在节能方面;优化算法相较于GA和NSGA-Ⅱ,NSGA-Ⅲ算法在收敛效果和收敛速度上均为更优。  相似文献   

15.
针对机械手系统的高精度轨迹跟踪控制,提出了一种基于模糊补偿的RBF(radial basis function)神经网络机械手控制方法.该方法首先利用PD(proportional-integral)控制器获得机械手的控制策略,将其输出作为RBF神经网络的输入,并学习得到系统模型;然后运用模糊逻辑补偿器对系统扰动和建模误差进行补偿;最后,在MATLAB/Simulink平台上针对两关节机械臂,进行了有模糊补偿和无模糊补偿系统跟踪的均方根误差测量仿真实验.研究结果表明,两关节机械臂的控制精度分别提高了60.8%和71.4%,本文提出的方法能够解决机械手实际模型很难精确建立的问题,并能对系统未建模部分和扰动部分进行自适应补偿.   相似文献   

16.
针对高速列车纵向动力学特性,分析了牵引力、制动力、阻力与速度和加速度的关系;考虑了天气和线路对高速列车运行状态造成的随机干扰,以及机械磨损和运行环境对列车模型结构参数造成的随机影响,建立了噪声干扰下的高速列车纵向动力学参数化状态空间模型,利用期望极大化准则,计算了列车模型参数的条件数学期望,并结合粒子滤波理论估计了参数粒子下的列车状态;基于贝叶斯后验概率理论,建立了高速列车非线性动力学模型的时变参数辨识方法,估计了列车的实时状态,并在噪声与参数分布均属于高斯分布、噪声属于高斯分布与参数属于指数分布、噪声属于伽玛分布与参数属于高斯分布的3种工况下,进行了蒙特卡洛仿真试验。仿真结果表明:在3种工况下,高速列车位移和速度的估计值与真实值的相对误差小于5%,列车模型参数估计值与真实值的相对误差小于10%,满足实际系统需求,因此,在高斯或伽玛噪声的干扰下,针对给定概率分布的时变参数,本方法均能实现系统状态的估计和模型参数的辨识。  相似文献   

17.
为保证列车运行安全性, 提高铁路线路运载效能, 针对移动闭塞系统, 研究了高速列车追踪运行的间隔弹性调整策略和操纵轨迹的动态优化问题; 以高速列车运行安全性、效率、能耗和乘客舒适度作为列车运行控制策略曲线的优化目标, 研究了列车的追踪运行过程; 采用差分进化算法求解了列车运行过程多目标优化模型, 设计了离线最优运行控制策略曲线; 提出了列车弹性追踪间隔模型, 分析了列车运行过程中追踪间隔的实时变化; 基于弹性间隔模型设计列车追踪运行控制策略动态调整机制, 采集列车实际运行数据, 实时监测相邻列车间的实际追踪间隔, 评估其是否符合安全性与效率约束条件, 并分析了评估结果; 依据工况调整原则在线调整追踪列车的运行状态与工况, 实时优化列车追踪间隔; 应用武广高速铁路赤壁北—长沙南区间的实际运行数据进行了仿真验证。仿真结果表明: 与真实区间运行数据相比, 采用离线最优运行控制策略曲线后, 运行能耗降低了6.86%;与固定追踪时间间隔模型相比, 采用基于弹性模型的控制策略动态调整机制有效提升了铁路整体运输效能, 将临界安全发车间隔从234 s缩短至161 s, 线路整体运行效率由6 434 s缩短至6 376 s, 与真实运行数据相比, 追踪列车的运行能耗降低了7.194%。   相似文献   

18.
介绍了一种基于指数趋近率的滑模变结构控制(SMC)方法.速度环采用PI控制,消除系统稳态误差和提高响应速度,位置环采用滑模控制,抑制参数摄动及负载扰动.仿真结果表明:该控制策略具有良好的响应速度并能快速准确的跟踪位置给定.  相似文献   

19.
建立磁浮列车运行的动力学模型,根据被控对象的实际特点,选用比例积分模糊控制器对列车运行速度进行控制。该模糊控制器输出量的隶属度函数采用相邻函数中心不等距的方式,使输出量跟随外界信号的增强而加大控制作用。在Simulink中按PI Fuzzy控制方式和PID控制方式分别进行仿真,仿真结果表明,采用PI模糊控制器可以确保列车实际运行速度很好地跟踪给定速度,系统的鲁棒性良好,尤其在有干扰的情况下控制效果明显好于PID控制方式。  相似文献   

20.
为实现高速列车的安全、高效、平稳运行,利用Petri网描述与分析了给定跟驰状态下高速列车控制策略与安全车距的互动演化机理,探讨了高速列车复杂跟驰形势下的安全车距计算问题,建立了能够反映高速列车控制策略的停车减速运行数学模型,提出了基于控制策略的安全车距计算方法,以满足高速列车当前跟驰状态下行为调整的安全性、高效性和平稳(舒适)性和有助于动态安全车距和控制策略的实时标定。在前车速度分别为250、300、350 km·h-1,后车速度为300 km·h-1三种跟驰状态下,计算了前后车分别采取不同的控制策略时应保持的安全车距。计算结果表明:随着前后车控制策略的变化,安全车距是不同的,对列车行为调整的平稳(舒适)性与跟驰效率的影响也存在差异;综合考虑安全、效率和列车行为调整的平稳(舒适)性,宜针对高速列车不同跟驰状态重新标定不同跟驰控制策略下的安全车距,并建立相应的数据库,作为列车运行和控制的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号