首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了一种纵横向协调控制的路径跟踪控制方法; 建立了车辆预瞄误差模型和考虑路面地形的高速车辆等效动力学模型, 以此引入道路曲率地形因素; 基于模糊规则设计了预瞄距离发生器, 解决预瞄误差模型中固定预瞄距离的问题; 建立了预测时域与道路曲率的函数关系, 运用模型预测控制算法求解前轮转角, 从而建立路径跟踪控制器; 运用指数模型表示车辆期望车速, 设计了比例积分微分纵向控制器控制车速以改善路径跟踪精度; 运用质心侧偏角相平面图表征车辆稳定性特征, 设计比例积分微分稳定性控制器以改善车辆稳定性。研究结果表明: 提出的控制方法能在不同附着系数路面上对车辆跟踪性能进行优化, 在干燥沥青路面以车速90 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少33%;在潮湿沥青路面以车速70 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少30%;在冰雪路面以车速55 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少16%。可见, 所提出的控制方法能有效改善路径跟踪精度。   相似文献   

2.
对汽车列车的运动特点进行了研究,建立了考虑铰接角的单拖挂汽车列车驾驶员模型;对挂车制动时车辆运动状态的变化进行了分析,设计了基于差动控制的道路跟踪控制器,建立了基于Simulink和Trucksim的联合仿真模型,验证了双移线工况下模型的路径跟随性和行驶稳定性。结果表明:基于差动制动的单拖挂汽车列车道路跟踪控制器,与单点最优预瞄驾驶员模型控制器和考虑铰接角的驾驶员模型控制器相比,转向过程更加平稳,提高了路径跟踪能力,降低了侧向加速度峰值,提高了行驶稳定性。  相似文献   

3.
为了加强汽车行驶安全性,搭建了包含环境感知、危险态势评估、路径决策和控制执行四部分的智能汽车主动避障系统。基于改进人工势场模型构建了以道路边界斥力势场、动态障碍物斥力势场和引力势场核心的路径规划模块,同时,建立以前轮偏角为控制变量的车辆动力学模型,利用模型预测算法对路径进行跟踪。利用动力学仿真软件CarSim和控制仿真软件Simulink联合仿真,结果表明文中运用的模型预测控制优于驾驶员预瞄控制,对路径具有更好的跟踪效果、提高了跟踪精度,实现了汽车主动避障。  相似文献   

4.
以半挂汽车列车与单体车为研究对象,应用最优控制建立方向控制驾驶员模型,建立目标函数研究驾驶员模型参数预瞄时间的特点与操稳表现。结果表明:驾驶员模型操纵半挂汽车列车行驶时可找到最佳车速和最佳预瞄时间来提高跟踪能力与侧向稳定性,最佳预瞄时间低车速时与单体车差异小、高车速时较单体车更长。  相似文献   

5.
以三轴半挂汽车列车为研究对象,以混合型模糊PID为控制器,建立适应于三轴半挂车辆的两点预瞄驾驶员模型。基于序关系分析法建立目标函数,确定不同车速下的最优牵引车及挂车预瞄距离。结果表明:在车速为30 km·h-1时,牵引车和挂车的预瞄距离分别为4 m和2 m,牵引车权重为0.9;在车速为70 km·h-1时,牵引车和挂车的预瞄距离分别为10 m和8 m,牵引车权重为0.75,目标函数最小,控制效果最佳。基于最优预瞄距离、权重的两点预瞄驾驶员模型较自建的单点预瞄驾驶员模型和Trucksim自带的单点预瞄驾驶员模型相比,在超调量、稳定性、转向轻便性方面综合控制效果明显,可在中高速车速下应用,提高安全性。  相似文献   

6.
针对智能车横纵向控制中路径跟踪精度、行驶稳定性以及乘坐舒适性等问题,提出了基于模型预测控制(MPC)的横纵向综合控制方法。速度规则系统根据参考路径曲率与车辆跟踪位移误差计算出期望速度曲线,速度跟踪控制采用分层式控制器,上层控制器利用MPC算法计算期望加速度,下层控制器利用车辆逆纵向动力学模型对车辆的驱动和制动进行协调控制。横向控制器根据参考路径、车辆反馈状态以及纵向上层控制器的期望速度计算车辆前轮转角。最后通过实验对比本算法与恒速MPC横向控制算法的轨迹误差,结果表明:本算法控制的车辆横向位移均方根误差减小了0.051 m,有效提高了车辆轨迹跟踪的控制精度。  相似文献   

7.
为改善现代无轨列车车体横摆稳定性和路径跟踪性能较差的问题,基于拉格朗日方程建立车辆动力学模型,分析了液压杆刚度对车辆转向性能的影响;为解决方程中含有未知约束力,导致其定量关系无法求解的问题,以横摆角速度误差和轨迹跟踪误差为优化目标,采用遗传算法离线优化了刚度参数,并利用函数插值方法在线预测,得到了不同车速、不同前轮转角下的最优液压杆刚度;为提高车辆轨迹跟踪性能,将横摆角速度跟踪误差与轨迹跟踪误差作为评价车辆横摆稳定性的标准,定义了车辆行驶过程中各个轴的侧向误差与航向角误差,基于滑模控制(SMC)算法设计了车辆横摆运动控制器,计算了期望横摆角速度,并进行了稳定性证明和稳态误差分析;由比例积分(PI)控制器计算分配到各个驱动轴的车体横摆力矩,并在U型弯路径上进行了仿真与试验。研究结果表明:车辆稳态转向时,液压杆刚度与车速、前轮转角直接相关,且在任何情况下,连接模块前部液压杆刚度一定大于后部液压杆刚度,车速在22 km·h-1左右时最优液压杆刚度最小;车速大于22 km·h-1时,速度越大,最优液压杆刚度越大,且前部液压杆刚度变化率明显大于后部;车...  相似文献   

8.
针对欠驱动船舶提出了一种非线性路径跟踪控制器,使其能够在风、浪、流等环境干扰下驶入预定的航行路径.欠驱动船舶以恒定前进速度航行,并且其合速度与参考轨迹相切.该控制器的设计使用了解析模型预测控制和干扰观测器技术,其中非线性观测器用来估计环境干扰.在最优路径跟踪控制器的作用下,路径跟踪误差渐近收敛到零.数值仿真结果验证了该控制器的有效性.  相似文献   

9.
建立了基于空气悬架的1/2车辆加速/制动系统模型,通过轴距预瞄在后轮处提前预测路面不平度;设计了基于轴距预瞄控制算法的加速/制动最优控制器;进行了白噪声仿真分析。仿真结果表明:与被动空气悬架加速/制动系统相比,基于轴距预瞄控制的主动空气悬架加速/制动系统能有效降低车辆振动。与最优控制空气悬架加速/制动系统相比,质心加速度和后轮对应处的车身加速度、悬架动行程、轮胎动载均有显著减小,较好的改善了车辆在加速/制动时的平顺性和操纵稳定性。  相似文献   

10.
为保证列车队列运行安全并提高队列稳定性,研究了列车队列稳定性模型验证与控制策略优化问题;基于车-车通信的列车队列采用等空间间隔、等时间间隔和变时距3种控制策略,利用随机价格时间博弈自动机,建立了包含领航列车和跟随列车的队列控制模型,分析了模型的队列稳定性;在保证列车运行安全的前提下,以列车的相对位置差、相对速度差和时间间隔差为成本函数,通过队列随机价格时间博弈自动机模型获得控制策略集;利用Q-Learning方法得到队列的最优驾驶策略,验证队列运行的安全性和稳定性;结合列车运行追踪场景,进行队列的稳定性分析。仿真结果表明:通过形式化验证,采用3种控制策略下的队列安全性得到了保证;通过随机价格时间博弈控制、协方差优化控制和Q-Learning方法对比PID控制,等空间间隔策略下的队列稳定性误差最大值分别减小到了0.19%、0.18%和0.11%,等时间间距策略下的队列稳定性误差最大值分别减小到了30.21%、10.34%和9.24%,变时距策略下队列稳定性误差最大值分别为118.27%、56.09%和39.67%,可见,采用Q-Learning方法的随机价格时间博弈理论能在安全前提下提高...  相似文献   

11.
通过相应的假设和线性处理,建立了线性四自由度汽车列车模型。基于此模型,分析了LQR控制策略,设计了LQR最优控制器。通过Matlab/Simulink和Truck Sim联合仿真分析,结果表明:设计的LQR最优控制器能有效地改善汽车列车的机动性和方向稳定性。  相似文献   

12.
针对高速列车运行过程中因不确定运行阻力和模型误差等因素产生的系统误差,提出了新的基于特征模型的高速列车自适应误差补偿控制策略,实现了其对给定目标速度曲线的渐近跟踪。首先通过动力学分析,基于特征建模方法和参数辨识,建立了存在系统误差的高速列车特征模型;其次,利用扩张状态观测器对系统误差的估计能力,设计了基于特征模型的高速列车自适应误差补偿控制器,并结合广义最小方差方法对控制器参数进行了优化,使其在存在系统误差时仍能实现对给定速度曲线的渐近跟踪。该控制策略能够有效处理系统误差带来的不确定性,提高控制精度,从而保障高速列车的安全可靠运行。为了验证本文所提方法的有效性,以CRH380A型高速列车为被控对象进行仿真实验。仿真结果表明设计的补偿控制方法在列车存在未知系统误差的情况下仍能保证理想的控制性能。  相似文献   

13.
针对高速列车在外部干扰下的速度控制问题,本文提出基于Koopman算子的高速列车高维线性模型的建模方法,并设计一种结合扩张状态观测器(ESO)与基于Koopman算子的模型预测控制(K-MPC)的复合控制器(ESO-K-MPC)。利用扩展动态模式分解算法来近似无限维线性Koopman算子,建立具有动态非线性特性的高速列车动力学高维线性模型;引入模型预测控制,设计扩张状态观测器,对系统总扰动进行估计与补偿,构建基于ESO-K-MPC的高速列车速度控制系统,再设计控制器与控制算法;结合CRH3列车参数和郑西高铁华山北站—西安北站实际线路数据,分别在没有扰动和白噪声干扰下对设计的控制方法与算法进行仿真研究。仿真结果表明:基于Koopman的高速列车建模对位移与速度的预测精度相比于线性状态空间模型分别提高了83.86%与87.40%;ESO-K-MPC可以准确估计与补偿高速列车运行中受到的干扰,控制输出曲线与期望曲线几乎重叠,实现了列车运行期望曲线的高精度跟踪。  相似文献   

14.
为解决高速列车运行过程中因轨面情况改变,导致列车没有达到最大黏着利用而出现空转或滑行等问题,设计了一种基于最大黏着系数的滑模自抗扰(SM-ADRC)黏着控制器;考虑轮轨间黏着特性的复杂、时变与非线性等特点,基于黏着机理分析,建立了轮轨间牵引系统的力学模型;采用极大似然估计(MLE)方法对不同轨面的相关参数进行辨识,计算了当前轨面的最大黏着系数,保证列车始终能达到最大黏着利用;通过引入滑模算法改进了自抗扰控制(ADRC)中非线性误差反馈控制律部分,设计了一种SM-ADRC黏着控制算法,利用Levant跟踪微分器减小初始跟踪误差,利用扩张状态观测器(ESO)估计和补偿系统总的外部扰动,由滑模控制提高系统的鲁棒性;采用MATLAB软件对CRH380A型高速列车进行仿真,在轨面情况改变时,由SM-ADRC黏着控制器控制列车跟踪设定速度,并将其与比例积分微分(PID)控制器、滑模控制器、ADRC的仿真结果进行对比。仿真结果表明:干燥轨面的最大黏着系数是0.160,16 s时辨识出真值;潮湿轨面的最大黏着系数是0.106,18 s时辨识出真值;ADRC的速度跟踪误差范围为±1 km·h-...  相似文献   

15.
汽车弯道前方碰撞预警控制系统研究   总被引:1,自引:0,他引:1  
根据驾驶员最优预瞄加速模型,对汽车弯道前方防撞预警系统进行了研究,阐明了汽车弯道前方碰撞预警控制模型的原理以及弯道道路边界检测算法.设计了角度法来分辨雷达获取的信息中位于本车道的前方障碍物,建立了汽车弯道防撞控制算法.经软件模拟仿真表明:该方法能够识别出前方弯道上行驶的车辆,正确预警;紧急情况下能启用控制器控制车辆安全行驶.  相似文献   

16.
在预瞄跟随理论基础上设计的驾驶员方向控制模型常用于弯道、移线、蛇行试验中横向轨迹的控制,文中研究了它对汽车侧风稳定性的控制效果.根据预瞄跟随理论及PID控制技术,采用MATLAB/Simulink建立了驾驶员方向控制模型;根据某轿车实测数据,采用多体动力学软件ADAMS建立了车辆-侧向风-道路耦合模型;通过定义输入变量(转向盘转角)和输出变量(侧向位移),实现了基于ADAMS与MATLAB/Simulink的汽车侧风稳定性联合仿真.试验结果显示驾驶员模型能够有效控制由侧向风引起的大幅度侧向偏移,系统具有较强的跟随性和鲁棒性.  相似文献   

17.
针对智能汽车轨迹跟踪问题,基于模型预测控制原理分别采用运动学模型和动力学模型为预测模型,通过对非线性系统进行线性化和离散化处理,根据约束条件、目标函数设计了2种轨迹跟踪控制器。基于Carsim与Matlab/Simulink联合仿真平台,在不同附着系数、不同车速下进行典型轨迹跟踪仿真试验。结果表明:不同工况下,2种模型预测控制器都有良好动态跟踪特性,动力学模型的跟随效果和控制平滑度略优于运动学模型。  相似文献   

18.
为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。   相似文献   

19.
针对执行器故障下高速列车的速度和位移跟踪控制问题,考虑模型参数的不确定性,引入自适应控制技术,设计了列车的自适应容错跟踪控制器.该控制器不依赖于列车模型参数的先验知识,不需要故障检测与诊断设备,可以有效克服列车模型参数未知以及执行器故障的影响,实现执行器故障下高速列车对目标速度和位移曲线的精确跟踪.基于Lyapunov稳定性理论证明了闭环系统的稳定性.仿真结果说明该控制器具有良好的容错跟踪控制能力.  相似文献   

20.
针对无人驾驶车辆的轨迹跟踪和避障问题,基于模型预测控制算法设计了避障轨迹跟踪控制器,实现避障和轨迹跟踪功能。在不同车速下采用Matlab和CarSim进行联合仿真试验,结果表明:设计的控制器控制性能和稳定性良好,能满足无人驾驶车辆的避障和轨迹跟踪需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号