首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以某支架现浇箱梁施工过程顶板中出现开裂为工程实例。采用了Ansys有限元分析的方法对产生裂缝的原因进行建模分析。研究结果表明:混凝土分批浇筑的收缩差和水化降温产生箱梁顶板受拉,这是产生现浇箱梁开裂的主要原因,而支架沉降不是导致本项目箱梁开裂的关键原因。  相似文献   

2.
多跨预应力砼连续箱梁悬臂浇筑施工中,若采用不对称施工的方式合龙,会使主桥线形控制更趋复杂。文中结合常德汉寿沅水大桥主桥施工监控实践,介绍了连续箱梁悬臂浇筑施工控制的结构仿真计算模型,分析了砼收缩和徐变、结构体系转换及不对称施工对箱梁挠度和应力的影响,从而得出箱梁挠度和应力的变化规律。  相似文献   

3.
鹤大高速红岭高架桥为5跨预应力混凝土连续刚构箱梁桥,经过多年运营,检测发现该桥右幅出现了主梁跨中下挠、腹板斜裂缝、顶板纵向裂缝等病害。为了解病害原因及结构受力状态,对病害原因进行分析,并进行荷载试验,在此基础上进行维修加固设计研究。结果表明:弯剪作用引起腹板斜向开裂,横向弯矩过大引起顶板开裂,预应力径向作用过大造成底板开裂。该桥上部结构校验系数大部分大于或接近于1.0,正截面抗拉强度不满足设计荷载要求;采取顶板加厚、腹板加厚、底板增设横梁以及张拉体外预应力加固设计。数值模拟分析显示加固后箱梁顶、底板最大压应力有效降低,安全储备增加,主应力得到明显改善。加固后第3跨L/4、L/2、3L/4截面分别上挠14.34,0.34,12.61 mm,结构受力满足现行规范要求。  相似文献   

4.
为了解连续钢板组合梁力学性能特点,并改善其负弯矩区易开裂的状况,以长沙至益阳段高速公路扩容工程4×30m连续钢板组合梁桥为背景,采用ANSYS软件建立组合梁有限元模型,分析组合梁结构施工过程及成桥阶段的应力分布,研究支点负弯矩区桥面板裂缝控制措施。结果表明,施工阶段简支状态下,连续钢板组合梁混凝土桥面板基本处于受压状态,钢梁跨中最大Von Mises应力约为70.5MPa,翼缘焊钉顺桥向剪力从跨中向两侧支点逐渐增加,最大值12kN;汽车活载作用下,墩顶处混凝土桥面板顺桥向最大拉应力为2.9MPa,钢梁最大Von Mises应力约为64.6 MPa,焊钉顺桥向剪力峰值约为22kN。采用调整施工顺序、墩顶区现浇微膨胀纤维混凝土、加强负弯矩区纵筋配置等措施有效调整了结构应力分布,减小负弯矩区的裂缝宽度。  相似文献   

5.
该文以某混凝土无背索斜拉桥为工程依托,根据桥梁结构施工过程中不确定的控制影响因素,基于施工控制原理,运用有限元软件,探究了施工过程中索力超张拉与主梁顶板浇筑超方两种人为因素对结构受力的影响。分析探究表明:主梁采用满堂支架施工的无背索斜拉桥因单根拉索超张拉对主梁线形、应力影响较小;整体拉索超张拉10%时,已接近主梁线形规定值。主梁顶板随机超方浇筑厚度为2 cm时,若不对主梁刚度引起太大变化,则对结构的主梁线形、拉索应力、主梁上、下缘截面应力变化较小,且满足规范要求;主梁的整体超方浇筑会影响主梁的刚度,该依托工程建议主梁顶板整体超方厚度不应超过1.5 cm,否则影响主梁线形验收规定值。  相似文献   

6.
钢-混组合连续梁桥在施工期间的受力会随着桥面板施工顺序不同而变化。为研究桥面板施工顺序对钢-混组合连续梁桥受力的影响,文中基于三维有限元软件ABAQUS对三跨连续的钢-混组合连续梁桥施工阶段进行数值模拟,分析现浇砼桥面板在施工过程中因浇筑顺序不同而引起的应力变化差异,同时对现浇砼容重误差对施工中钢-混组合连续梁桥受力的影响进行数值分析。结果表明,采用整体浇筑时,负弯矩区桥面板的应力变化幅度大,易产生早期裂缝;采用文中所述两种分段浇筑方法能改善负弯矩区砼桥面板的受力状况,且浇筑方法一优于浇筑方法二;砼容重误差对连续组合梁整体受力的影响较小。  相似文献   

7.
陈加升  陈磊 《路基工程》2008,(1):154-155
高支架上浇筑混凝土连续箱梁的重点和难点在于如何控制支架的变形,保证混凝土浇筑质量,防止沉降裂缝的产生.以贵阳兴筑东路一号大桥连续箱梁施工为例,从支架的布置、预压、混凝土工作性能和浇筑顺序等方面介绍了采取的措施和对策,以及取得的效果.  相似文献   

8.
为掌握预应力混凝土V墩三角刚构施工过程中应力、变形变化规律,确保施工质量和安全,以前程路大桥(V墩异型钢-混梁拱组合桥)为背景,采用MIDAS/FEA建立大桥组合有限元模型,依据施工方案,详细分析施工过程中预应力混凝土V墩三角刚构受力和变形特点。结果表明:V墩分段施工至支架拆除,V墩斜腿顶、底板压应力不断增大;中跨钢结构施工至吊杆初次张拉,V墩斜腿顶、底板最小正应力保持稳定不变;拆除中跨下部支架结构体系转换后,V墩斜腿底板最小正应力明显减小;边跨支架拆除和桥面二期铺装完成时,V墩斜腿顶、底板混凝土分别出现第一主应力和第三主应力最大值,且最大第一主应力分布区域主要在V墩斜腿靠中跨侧顶部顶板和底部底板局部,最大第三主应力分布区域分布于V墩中跨侧斜腿中下部顶板局部;整个施工过程中V墩三角刚构上部箱梁底板最大压应力-9.96 MPa;在边跨预制梁架设后,V墩三角刚构上部箱梁跨中上挠最大(相对支承边,跨中最大上挠8.6mm);中跨支架拆除结构体系转换后,上部箱梁南侧支承边竖向位移沿横桥向差异比北侧支承边的大(最大2.9mm);对于前程路大桥,在大刚度的V墩三角刚构和两端横梁的共同作用下,上部箱梁扭转及横向变形很小。  相似文献   

9.
使用ANSYS对一座三跨预应力砼连续箱粱桥建立三维有限元模型,并施加升温及降温温度梯度荷载,分析箱梁横、纵向温度应力的空间分布规律;通过改变腹板厚度,分析腹板-顶板刚度比对应力空间分布规律的影响.结果表明,腹板-顶板刚度比的变化对温度应力空间分布规律有显著影响,实际工程中应重视温度梯度引起的砼葙梁开裂,合理设计腹板-顶板刚度比.  相似文献   

10.
为研究影响非对称组合梁斜拉桥转体施工结果的具体因素,以某非对称钢混组合梁斜拉桥为研究背景,采用有限元软件对其进行参数敏感性分析,重点研究施工支架刚度、斜拉索初始张拉力以及平衡配重对结构施工过程内力和线形的影响。结果表明:1)支架刚度对斜拉桥落架后的主梁内力影响很小;2)增大初始张拉力能够减小主梁跨中处的弯矩,但同时会增大塔根处主梁的弯矩,适当调整初始张拉力可以减小主梁脱离支架后的位移以及两侧中跨悬臂端位移差;3)过大的配重线极度会增大边跨负弯矩,可能成为控制设计的因素,但适度的配重重量可以减小主梁跨中悬臂端的下挠。  相似文献   

11.
银川滨河黄河大桥东水中引桥为双幅(5×80)m曲线连续钢-混组合梁桥,由开口钢槽梁和预制桥面板结合而成。桥位处施工场地受限,冬季长、冻土深。为实现冬季连续施工,该桥利用单侧场地,充分发挥钢-混组合梁的结构特点,采用无跨间支撑的整联横移技术进行双幅箱梁施工。在施工中,对地基进行冻结处理,在冻土上设预制扩大基础和钢管柱,形成快速拼装支架;利用双幅承台设横移支架和墩顶横向滑移装置,在顺桥向跨间无支撑状态下,将右幅钢梁整联横向滑移就位;采取了钢梁线形预设抛高、浇筑负弯矩区底板混凝土、设剪力钉及分步安装桥面板等综合措施,在无跨间支撑状态下将钢梁与预制混凝土桥面板结合,最终形成的钢-混组合梁结构满足设计目标线形与内力要求。  相似文献   

12.
连续刚构桥设计关键技术问题的探讨   总被引:3,自引:2,他引:1  
针对连续刚构桥箱梁混凝土开裂、跨中下挠、底板崩裂等病害,分析其产生的原因,提出一些防止病害发生的对策措施,主要有:腹板斜裂缝可以通过增加梁高、设置腹板下弯钢束及加强竖向预应力有效性来改善;跨中下挠可通过增加顶板负弯矩钢束、采用塑料波纹管和真空辅助压浆工艺、控制钢束张拉龄期及设置后期备用钢束来改善;底板崩裂可通过合理控制结构的预应力度、选择合适的墩身刚度、优化钢束配置、优化梁高变化规律、合理选择底板厚度与波纹管间距及设置防崩钢筋等来改善.  相似文献   

13.
为了探究配置竖向预应力筋的箱梁腹板开裂荷载的影响及开裂前后力学行为的变化,文章选择较小剪跨比λ=1.15的双悬臂计算模型,模型顶部充分施加纵向预应力,悬臂端分级施加集中荷载,直至腹板出现腹剪裂缝并展开,采用ANSYS建立实体模型,以不张拉竖向预应力、张拉120k N竖向预应力为例,进行结构仿真计算,分析竖向预应力张拉与否对腹板开裂及裂缝开展形态,开裂荷载、开裂前后结构应力、刚度的影响,并对腹板开裂前后竖向预应力筋应力重分配进行了数值分析,得出配置竖向预应力可以显著提高腹板抗裂性,影响裂缝发生及开展形态、提高腹板开裂后结构刚度。文章研究结论对箱梁腹板竖向预应力理论研究及设计具有指导意义。  相似文献   

14.
该文采用Ansys对中小跨度连续箱梁桥采用二次浇筑方式施工的全过程进行了模拟,对梁体裂缝产生的原因进行了研究.在考虑支架—梁体总体变形、支架与地基非弹性沉降、水泥水化热、混凝土早期特性等因素的综合影响下,通过时变时程分析,研究了支架和基础非弹性沉降对梁体混凝土开裂的影响.研究表明:非弹性沉降是决定桥梁混凝土是否开裂的重要因素.通过支架体系整体沉降量和沉降差等量化指标,给出临界开裂状态所对应的非弹性沉降组合.  相似文献   

15.
石首长江公路大桥主桥为主跨820m的双塔不对称混合梁斜拉桥。中跨和南边跨采用钢箱梁,北边跨采用预应力混凝土主梁。结合场地水文和地质特点、宽幅大截面箱梁抗裂和质量要求,PC主梁采用"地面预制+支架存梁"的短线法预制拼装施工方案。主梁纵向体内预应力采用大直径优质合金高强钢棒预应力体系,配套采用体内+体外束预应力设计。通过采用地面预制的施工方案、构造优化和横向预应力多次分批张拉、混凝土的配合比及温控养护措施,在宽幅、大截面箱梁的匹配预制精度控制、裂缝控制上取得了预期效果。北边跨预制PC梁胶拼成跨,不设湿接缝,通过无应力长度参数和梁段间竖向转角参数的精度控制保证成桥线形。北边跨PC主梁预制精度、工程质量和拼装线形达到了设计预期。  相似文献   

16.
对钢-混凝土连续组合梁桥而言,负弯矩区混凝土板由于承受较大拉应力而开裂,从而引起钢筋及钢梁腐蚀等严重问题,影响了结构耐久性和承载能力。因此,负弯矩区混凝土板裂缝控制是设计中的重要一环,控制效果直接关系到结构的安全性和耐久性。该文结合最新的研究进展,对组合梁负弯矩区混凝土板的开裂特点、影响因素、裂缝宽度计算、裂缝控制措施等几个方面进行总结、阐述,希望能对连续组合梁桥负弯矩区的裂缝控制有所帮助。  相似文献   

17.
田国印  马亮  黎人亮  黄克起 《桥梁建设》2012,42(Z1):135-138
重庆中渡长江大桥北岸引桥上部结构采用现浇连续箱梁结构,现浇箱梁施工采用贝雷梁钢管支架.为保证支架的安全性、消除支架和地基的非弹性变形,施工前需对支架进行预压.通过对现浇箱梁各种预压方案的比较,最终选用蓄水预压法.蓄水预压前应先对钢管支架进行检查验收,合格后进行模板铺设,并在模板内铺设防水篷布,确保防水篷布粘结牢固后进行逐级抽水加载预压,并对支架进行沉降观测.预压后支架沉降满足要求,浇筑的箱梁成品外观线形优美.  相似文献   

18.
刘昀 《中外公路》2021,41(5):116-119
预应力混凝土箱梁裂缝是影响桥梁结构安全的重大隐患.该文对某三孔预应力混凝土变截面箱梁建立有限元模型,分析竖向预应力损失和箱梁腹板厚度对箱梁桥开裂的影响.结果 表明:连续箱梁边墩支点附近的边跨现浇梁段的主拉应力值较大,且这些位置截面梁高较小,如果施工和运营阶段竖向预应力损失过大,在这些区域容易出现腹板斜裂缝;腹板厚度对斜截面抗剪承载力的影响比截面主拉应力的影响大;箱梁支点附近梁段腹板厚度较薄,容易导致斜截面抗剪承载能力不足.  相似文献   

19.
针对某支架现浇箱梁在施工过程中出现的横向裂缝,利用空间实体有限元软件对可能导致裂缝的原因进行了系统分析,分别对支架沉降、混凝土收缩、混凝土水化降温的效应进行分析。分析结果表明,混凝土分批浇筑的收缩差和后浇混凝土水化降温效应是导致背景桥梁出现横向裂缝的主要原因。在此类结构施工过程中,应尽量减小分批浇筑混凝土的收缩差,同时需要对后浇混凝土的入模温度和浇筑时间进行控制,降低混凝土降温收缩产生的约束应力,降低混凝土开裂的风险。  相似文献   

20.
桥梁现浇支架的正确计算和现场实时监测是桥梁施工安全的重要保障。杭埠河大桥主桥箱梁临时支架独有特点:以钻孔桩为基础、贝雷梁跨度较大,这在中国类似桥梁建设中算是一种新的支架施工技术。该文以此桥梁支架结构为背景,利用有限元软件Midas和Ansys对支架结构的强度、刚度及稳定性进行了计算,验证了设计支架的安全和可行性。现场采用一种新的高精度的连通管技术建立了支架变形沉降自动化监测系统,并布置了钢弦式应变计对支架的应力进行测试,从而实现了主桥箱梁浇筑与张拉过程中支架变形和应力的实时监控。实测数据与理论计算值吻合较好,支架的变形与应力均在安全范围内,确保了桥梁结构的施工安全与稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号