首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
以某盾构穿越铁路既有线为背景,采用地层结构法,通过有限元数值模拟,选取对地基加固与不加固两种情况计算铁路列车荷载对盾构隧道的附加动应力影响,然后采用荷载结构法对偏载模式下隧道结构的内力和管片配筋进行了计算分析。结果表明:铁路列车荷载对盾构隧道的附加动应力影响较大,使隧道结构内力增大。加大隧道管片结构的配筋量,对地基进行加固,可以减小附加动应力的影响,从而减小结构内力。  相似文献   

2.
不同轨道状态对轮轨附加动荷载影响   总被引:1,自引:0,他引:1  
根据随机振动基本理论,建立了轮轨相互作用模型,分析列车速度提高后,轨道不平顺谱、轨道刚度等参数对轮轨附加动荷载的影响,本文主要对不同轨道状态下的轮轨附加动荷载进行了研究,研究结果认为,采用合理的轨道结构,减小轨道的不平顺,可以明显降低轮轨附加动荷载,是减少由于列车速度提高后轮轨动力作用的有效措施。  相似文献   

3.
地铁盾构隧道下穿城际铁路地基加固方案安全性分析   总被引:7,自引:0,他引:7  
苏州某地铁盾构隧道下穿沪宁城际铁路施工时,原有铁路地基加固方案产生的沉降量不能满足高速铁路的要求,因此,结合原加固措施,采用板+桩组合结构的形式对地基进行加固.对此方案,采用二维有限元法分析不同应力释放率下盾构施工引起的地表沉降规律.当应力释放率为30%时,盾构下穿处板+桩组合结构的沉降量为3.9 mm,满足高速铁路无砟轨道对工后沉降的要求,但此时板+桩组合结构中的加固板将与其下方土体脱离.采用三维有限元方法,对高速铁路轨道结构进行静、动应力响应分析.结果表明:当加固板与其下部土体脱离时,在自重应力作用下,钢轨轨面的最大变形为0.582 mm,满足轨道不平顺的要求;在最大列车动荷载作用下,轨道板和加固板的最大拉应力分别为0 93和1.02 MPa,均小于规范中所要求的疲劳强度修正值.由此可知,在盾构隧道下穿施工时,城际铁路地基采用板+桩组合结构形式的加固方案,是能够保证运营安全的.  相似文献   

4.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

5.
青藏铁路多年冻土区路基结构的动力分析   总被引:1,自引:0,他引:1  
研究目的:本文对青藏铁路冻土路基在列车荷载下的结构动力进行了分析研究,为多年冻土区路基工程设计和铁路运营安全分析提供了依据。研究方法:以青藏铁路清水河多年冻土区试验段路基结构为工程背景,利用列车——轨道二维动力模型得到的道床底部列车荷载激励曲线,对冻土路基结构进行有限元时程反应分析,探讨冻融状态下路基的列车振动荷载效应。研究结论:无论是暖季融化还是寒季冻结状态,列车振动荷载产生的土体压应力都大大高于静荷载,车速对土体动应力反应有明显影响;冻结状态下,路基中下部土体的动力反应较大,而暖季融化时路基顶部土体对动应力有较显著的放大作用,因此,在工程设计和运营养护时应有针对性地对结构进行加强。  相似文献   

6.
以在建的某城际铁路暗挖隧道段下穿既有铁路线路为工程背景,对既有铁路列车运营对下穿隧道的振动影响展开研究,得到如下结论:因施工前对既有铁路线路采取的预加固措施及对既有铁路的运行速度的限制,有效减小了既有铁路运营对新建隧道带来的影响,列车动荷载引起的隧道内力及变形并不显著,不需要单独进行加固措施设计。  相似文献   

7.
利用ANSYS有限元软件建立了隧道护底翻修施工便梁三维有限元分析模型,通过设置施工便梁架设方式,并结合重载列车的荷载特点,分析了2类施工便梁在重载列车作用下的的内力特点。计算结果及施工可行性分析表明:采用下沉式便梁架空方案能够保证25 t轴重货物列车以60 km/h通过时线路轨道的几何尺寸、线路刚度和稳定性,另外,在主梁尺寸以及横梁间距设置合理的情况下,采用下沉式无水平顶丝及横梁混凝土支座方案是隧底翻修的一种理想方案,该方案对重载或普通铁路隧道基底结构的病害处理具有重要的借鉴意义。  相似文献   

8.
不断增加的列车动荷载与排水不畅是导致重载铁路基床产生不均匀沉降的主要原因之一,正确认识其变形规律对提高重载铁路长期服役性能有至关重要的作用。在包神铁路瓷窑湾站病害段基床部位取土样,基于单线法对土样进行动荷载作用下的湿化试验。试验确定了湿化作用下土体累积塑性应变方程及软化指数关系,同时分析了浸水作用对滞回曲线的影响。基于试验结果,提出土体动力湿化作用下的修正Iwan模型,并通过试验验证了模型在动应力增加情况下有较好的适应性。研究结果有助于预测重载列车动力荷载作用下基床土体变形,并对评价既有线路开行大轴重列车的适应性提供参考。  相似文献   

9.
高速列车荷载作用下无砟轨道-路基-地基的动力响应是高速铁路设计、施工和运维普遍关注的问题。为了较好地掌握高速列车荷载作用下的无砟轨道、路基以及地基各结构的动力响应,采用实体单元对无砟轨道结构、路基和地基进行建模,考虑扣件系统的5层垫片和弹条,以超弹性材料本构关系模拟橡胶垫片的大变形行为,以三维黏弹性静-动力统一人工边界模拟无限地基,以静动力顺序分析模拟路基和轨道的建造过程,以实测轮轨力模拟列车高速运行时产生的激励,构建高速列车荷载作用下无砟轨道-路基-地基精细化有限元模型,采用实测数据,从动位移、动应力和动应变三方面对模型进行验证。研究结果表明,所建模型间接地考虑了空气和轨道不平顺对高速运行列车荷载的影响,考虑了扣件系统多层垫片间接触压力的传递和扩散,能很好地模拟列车荷载作用下无砟轨道-路基-地基系统的动力响应,与实测结果吻合很好。高速列车荷载作用下基床表层的动应力小于20 kPa,动应变处于10με量级,表明路基处于小应变和弹性变形状态。该模型可用于深入研究高速列车荷载作用下无砟轨道-路基-地基的动力学行为,为高速铁路无砟轨道结构及路基设计、优化提供一种有效的计算分析手段。  相似文献   

10.
D型施工便梁动态特性的有限元分析   总被引:3,自引:1,他引:2  
D型施工便梁常作为临时结构加固既有线路,其自振特性以及和机车、车辆动力荷载的联合振动特性是判断结构运营状况和承载特性的重要指标。本文运用有限元方法,计算D型施工便梁在动荷载作用下的动挠度和自振频率,分析和评估便梁的刚度和安全性,并将计算值和实测值进行对比。  相似文献   

11.
无砟轨道线路临时架空技术是在轨道病害修复过程中保障列车正常运行的关键。本文结合一高速铁路车站无砟轨道沉降整治工程,研发了适用于无砟轨道线路的临时架空装置。该装置以钢垫梁作为架空主体,可采用1片钢垫梁替换1块轨道板架设临时线路,也可采用多片钢垫梁替换连续多块轨道板,构成多跨连续的架空结构。架空装置施工便捷,稳定性好,安全可靠。现场应用测试结果表明,列车通过临时线路时的脱轨系数、减载率、轮轴横向力以及钢垫梁的跨中竖向、横向挠度等指标均小于相应限值。该装置所架设的临时线路能够满足高速铁路列车以速度45 km/h通行的要求。  相似文献   

12.
为研究高铁列车和地铁列车同向以不同速度行驶时的振动对高铁隧道衬砌结构的影响,采用模拟的列车振动荷载,在铁轨上施加对轮轴的模拟振动荷载并考虑列车速度来研究同向列车振动荷载下高铁隧道衬砌的动力响应特性。结果表明:在同向行驶的列车振动荷载作用下,对于隧道特定监测点而言,存在一个列车行驶振动响应的影响区,列车行驶至该监测点时,其振动响应最大;高铁隧道中部横断面衬砌振动响应从上到下逐渐增大,拱脚、拱底竖向应力幅值分别为拱腰的1.63、2.26倍,加速度最大幅值分别为拱腰的1.21、1.29倍。  相似文献   

13.
郭强  王平  徐井芒  胡辰阳 《铁道建筑》2020,(3):123-126,140
为了研究地铁曲线段不同减振轨道的轮轨动态相互作用,通过现场实测数据对比分析了橡胶隔振垫道床轨道、钢弹簧浮置板道床轨道、梯形轨枕轨道、单趾弹条扣件轨道4种减振轨道结构的轮轨力、钢轨动态位移,以及对应断面处隧道壁的垂向振动加速度。分析结果表明:单趾弹条扣件轨道振动相对较大,钢弹簧浮置板道床振动相对较小;4种减振轨道对应的轮轨垂向力、横向力、脱轨系数均满足列车安全运营要求;钢弹簧浮置板道床轨道的钢轨动态位移平均值较大,但小于安全限值。  相似文献   

14.
为防止高速列车振动引起广深港高铁狮子洋大断面盾构水底隧道软土地层液化风险,轨道结构采用减振板式无砟轨道。为考察减振措施效果,分别建立列车-轨道模型、隧道-地层有限元模型,分析列车荷载作用下隧道结构及周围土层动力响应及分布规律,对比分析减振和非减振两种工况下地层动剪应力和加速度,结果表明,采取减振措施可有效降低软土地层液化风险,提高安全储备,达到了预期的目标。研究成果对隧道穿越软土地层设计具有指导意义。  相似文献   

15.
斜拉桥上无缝线路纵向相互作用理论及试验研究   总被引:1,自引:1,他引:0  
运用梁轨纵向相互作用机理,建立斜拉桥上无缝线路纵向力计算模型,以一座铁路常用双塔钢桁斜拉桥为例,对斜拉桥上无缝线路纵向相互作用规律进行理论和试验研究。分析结果表明:在主桥左右两端各铺设一组单向伸缩调节器,主桥上钢轨纵向力可得到有效的控制,现场试验测试的桥面纵向位移及钢轨伸缩力分布规律与理论计算基本相同,所建立模型可用于斜拉桥上无缝线路纵向相互作用分析;钢轨挠曲力计算时,可在斜拉桥主跨及其邻跨上布置荷载,且不必考虑列车入桥方向的变化;钢轨伸缩调节器可有效减弱列车制动荷载下的梁轨相互约束作用,减小线路受力变形。  相似文献   

16.
大跨度连续梁拱组合桥梁轨互制特征   总被引:1,自引:1,他引:0  
为研究大跨度连续梁拱组合桥梁轨相互作用特征,以梅汕线上某(34+160+34)m刚架系杆拱钢箱连续梁组合桥为背景,采用理想弹塑性模型模拟线路纵向阻力,建立"轨-拱-梁-墩"一体化空间模型,对钢轨纵向力的分布规律进行分析,对是否考虑轨道作用下的主梁应力、梁端转角、墩底纵向反力进行比较。结果表明:连续梁拱组合桥远离固定支座的梁端处钢轨纵向力较大,其中最大伸缩应力达到114.0 MPa,在不设钢轨伸缩调节器时钢轨强度仍满足要求;轨道结构对温度荷载和制动力作用下的主梁应力影响较大;轨道结构对梁端转角及墩底纵向反力的分配亦有较大影响。  相似文献   

17.
弹性支承块式无砟轨道结构参数动力学优化设计   总被引:6,自引:0,他引:6  
蔡成标  徐鹏 《铁道学报》2011,33(1):69-75
建立车辆-弹性支承块式无砟轨道耦合动力学模型。模拟落轴试验荷载条件,分析轨下刚度与块下刚度的匹配关系,得出轨下刚度与块下刚度的合理取值范围。在轨道刚度确定的前提下,提出不同运营条件下满足动态轨距扩大限值的弹性支承块式无砟轨道合理结构参数。评估不同半径曲线上铺设弹性支承块式无砟轨道时重载货车和快速客车的运行安全性和舒适性。研究隧道内弹性支承块式无砟轨道与隧道外有砟轨道过渡段动力学问题,结果表明:将有砟轨道向隧道内延伸一定长度可明显改善连接处轨枕的受力状况,同时使支承块免受雨水侵蚀。延伸段长度以10~20 m为宜。  相似文献   

18.
为研究地铁大跨度连续钢桁桥上铺设减振垫无砟轨道时钢轨伸缩调节器的适用性,并对列车运行安全性进行评估,建立地铁列车-轨道-钢桥耦合动力学模型,对列车以不同速度通过桥梁时,设置钢轨伸缩调节器与不设置钢轨伸缩调节器两种工况对车体加速度以及不同激励条件下的轮轨垂向力等指标进行分析;提取钢轨伸缩调节器处结构的动力响应值对梁端结构动力响应进行研究,并对结构动力响应随速度的变化规律进行探索。结果表明,钢轨伸缩调节器对地铁钢桥动力效应影响较小,建议在地铁钢桥的适当区域应该进行钢轨伸缩调节器设置,以减缓无缝线路不良影响。  相似文献   

19.
在实际运营中,隧道内轨道结构由于地下水压力作用和混凝土强度不足等问题,出现道床板上拱并产生裂纹病害,当上拱和裂纹达到一定程度,会对行车造成一定的影响,故针对隧道内轨道结构病害提出采用钢支墩更换无砟轨道道床板的整治方案,并提出施工流程建议。此方案结构较为简单,施工更换方便,能够节省施工时间,为快速恢复既有线铁路运营提供了保障。同时基于连续弹性支承梁模型和弹性点支承梁模型,推导出钢轨竖向和横向支点力,将其施加在局部计算模型上进一步开展了力学仿真计算。计算结果表明:钢支墩的埋深比应取1.8,当其出露高度在0.04~0.34 m时,钢支墩周围混凝土的应力及变形均满足设计要求,采用钢支墩更换隧道内无砟轨道方案是可行的。  相似文献   

20.
高速铁路轨道在雷击或故障冲击电流作用下会产生暂态冲击过电压,该过电压的大小由轨道的波阻抗决定。通过建立高速铁路线路的仿真模型,分析直角冲击波在轨道上的传播与折反射过程,提出轨道的波阻抗的计算方法,研究钢轨类型、土壤电阻率、钢轨对地过渡电阻对波阻抗的影响。结果表明:P60型轨道波阻抗数值为235. 55Ω;轨道的波阻抗主要受钢轨类型和土壤电阻率的影响,高速铁路轨道的波阻抗在在210~250Ω变化;在高速铁路轨道仿真模型中,线路末端电阻等于波阻抗时,可以有效地消除折反射对仿真结果的影响,末端电阻的取值不需要考虑钢轨地过渡电阻的影响。研究给出高速铁路轨道波阻抗的范围及仿真模型中末端电阻的取值方法,可以为轨道过电压计算、分析与仿真提供理论与方法参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号