首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.  相似文献   

2.
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.  相似文献   

3.
This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.  相似文献   

4.
This paper researches how to apply the advanced control technology of model predictive control(MPC) to the design of the dynamic positioning system(DPS) of a semi-submersible platform.First,a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform.Second,a model predictive controller was designed based on a model which took the constraints of the system into account.Third,simulation was carried out to demonstrate the feasibility of the controller.The results show that the model predictive controller has good performance and good at dealing with the constraints of the system.  相似文献   

5.
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.  相似文献   

6.
As a kind of clean and renewable energy,tidal current energy is becoming increasingly popular all over the world with the shortage of energy and environmental problems becoming more and more severe.A floating tidal current power station is a typical type of tidal current power transformers which can sustain the loads of wind,waves,and current,and even the extreme situation of a typhoon.Therefore,the mooring system must be reliable enough to keep the station operating normally and to survive in extreme situations.The power station examined in this paper was installed at a depth of 40 m.A 44 mm-diameter R4-RQ4 chain was chosen,with a 2 147 kN minimum break strength and 50 kN pretension.Common studless link chain was used in this paper.Based on the Miner fatigue cumulative damage rule,S-N curves of chains,and MOSES software,a highly reliable mooring system was designed and analyzed.The calculation results show that the mooring system designed is reliable throughout a 10-year period.It can completely meet the design requirements of American Petroleum institution(API).Therefore,the presented research is significant for advancing the design of this kind of power station.  相似文献   

7.
系泊系统非线性恢复力研究及其应用(英文)   总被引:2,自引:1,他引:1  
Mooring system plays an important role in station keeping of floating offshore structures.Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years.At present,chains and wire ropes are widely used in offshore engineering practice.On the basis of mooring line statics,an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article,taking into account the horizontal restoring force,vertical restoring force and their coupling terms.The nonlinearity of mooring stiffness was analyzed,and the influences of various parameters,such as material,displacement,pre-tension and water depth,were investigated.Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented.Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system.Also,the stiffness can be used in hydrodynamic analysis to get the eigenfrequency of slow drift motions.  相似文献   

8.
The dynamic responses of any floating platform are dependent on the mass, stiffness and damping characteristics of the body as well as mooring system. Therefore, it is very essential to study the effect of individual contributions to the system that can finally help to economise their cost. This paper focuses on the effect of mooring stiffness on the responses of a truss spar platform, obtained by different grouping of lines. The study is part of our present researches on mooring systems which include the effect of line pretension, diameter and azimuth angles. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analyzed in time-domain using the implicit Newmark Beta technique. The mooring lines restoring force-excursion relationship is evaluated using a quasi-static approach. It is observed that the mooring system with lines arranged in less number of groups exhibits better performance in terms of the restoring forces as well as mean position of platform. However, the dynamic motions of platform remain unaffected for different line groups.  相似文献   

9.
This paper focuses on the research of a semi-submersible platform equipped with a DP-assisted mooring system. Based on the working principles of the DP-assisted mooring system and the model of the platform motion, a time domain simulation program is applied to analyze the impact, in the case of one line failure, on the platform motion, power consumption of the thrusters and the tension of the mooring lines. The results show that, under the 10-year wind dominant, a one line failure will have little impact on the tension of the mooring lines. When the failure line is windward, the power consumption will increase greatly with a weakened position of accuracy. However when the failure line is leeward, the power consumption will be reduced with a partly strengthened oosition of accuracy.  相似文献   

10.
To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.  相似文献   

11.
近年来海上浮式风机的研究备受关注,安全可靠的系泊系统将保证风机在风、浪、流等复杂环境荷载作用下稳定运行,准确合理地描述风机运动将为评估风机发电效率提供支持。以半潜型浮式风机的系泊系统为研究对象,基于经典悬链线理论,采用准静态分析法提出一套系泊系统的设计方法。通过坐标变换,得到风轮真实的俯仰运动用于计算风机的动力效应及评定其发电效率。采用动力法分析了系泊系统锚链的导缆孔位置、预张力大小、锚链间夹角等参数对风机系统发电效率、浮式平台运动性能和系泊锚链张力的影响,得到了浮式平台迎风面俯仰倾角、水平偏移及锚链张力随参数的变化规律,为半潜型浮式风机系泊系统的设计提供了参考。  相似文献   

12.
The concept of a shared mooring system was proposed to reduce mooring and anchoring costs. Shared moorings also add complexity to the floating offshore wind farm system and pose design challenges. To understand the system dynamics, this paper presents a dynamic analysis for a dual-spar floating offshore wind farm with a shared mooring system in extreme environmental conditions. First, a numerical model of the floating offshore wind farm was established in a commercial simulation tool. Then, time-domain simulations were performed for the parked wind farm under extreme wind and wave conditions. A sensitivity study was carried out to investigate the influence of loading directions and shared line mooring properties. To highlight the influence of the shared line, the results were compared to those of a single spar floating wind turbine, and larger platform motions and higher tension loads in single lines are observed for the wind farm with shared moorings. The loading direction affects the platform motions and mooring response of the floating offshore wind farm. Comparing the investigated loading directions to the 0-deg loading direction, the variation of mean mooring tension at the fairlead is up to 84% for single lines and 16% for the shared line. The influence of the shared line properties in the platform motions and the structural responses is limited. These findings improve understanding of the dynamic characteristics of floating offshore wind farms with a shared mooring system.  相似文献   

13.
我国海洋油气开发正逐步从近海浅水区域不断往远海深水区域发展。随着水深的增加,传统的以锚链为材料,以自重为回复力的悬链线式系泊系统已经不再适用。世界上超深水浮式生产平台基本上都采用张紧式系泊系统,并且中间段采用超轻的聚酯缆材料以降低其施加在平台上的荷载。基于1500米超深水的中国南海环境,开发了一种运动性能良好的新型干树半潜平台。新型平台的系泊系统采用张紧式锚链-聚酯缆-锚链形式。根据平台尺度和环境条件,对系泊系统进行了布置和设计。通过时域耦合方法对系泊系统进行了数值分析,分析结果表明系泊系统强度满足规范和设计要求。  相似文献   

14.
选择地理位置、区域环境较为关键的岛礁,建立浅水浮式海洋平台,具有重要意义。应用在岛礁浅水区域的浮式海洋平台,由于受地理环境限制,很难设计对称式系泊系统。因此,本文设计2种典型非对称式系泊系统布置方案,基于TMA浅水波浪谱理论,对2种非对称系泊系统作用下浮式平台的水动力响应进行时域数值计算,计算结果与对称式系泊系统作用下结果对比分析,获得了非对称系统状态下平台运动响应特点及系泊张力分布特点。  相似文献   

15.
近岛礁浅水环境下浮式平台系泊系统设计研究   总被引:1,自引:0,他引:1  
丁军  程小明  田超  张凯  吴波 《船舶力学》2015,(7):782-790
基于有限水深格林函数、Morison公式和时域耦合动力分析方法,以一近岛礁半潜式生产生活平台为研究对象,分析了传统系泊方式(悬链线式和张紧式)和桩柱式系泊方式下平台的运动和系泊系统动力响应。结果表明,通常应用在中深水海域的传统系泊方式,在近岛礁浅水环境下使用时会出现一系列的问题,且进一步优化的空间较小。而文中提出的新型桩柱式系泊系统,很好地解决了传统系泊方式在浅水中存在的问题,且使得船舶的停靠变得更加便利。该文中的分析结果可为平台的水池模型试验和浅水环境下浮式平台系泊系统的进一步设计提供参考。  相似文献   

16.
OC4半潜浮式风机综合性能较好,但其浮式基础结构质量和结构复杂性使其建造成本高昂,而WindFloat半潜浮式风机浮式基础具有结构简单、建造成本低和减摇效果好等优点,但是适应水深较小且只适合特定海域。结合OC4和WindFloat半潜浮式风机浮式基础的结构特点,针对200 m水深环境设计OC4-WindFloat半潜浮式风机基础。基于叶素理论、莫里森公式和势流理论,通过有限元软件对OC4-WindFloat半潜浮式风机的固有周期及风浪联合作用下的动态响应进行耦合分析,并与OC4半潜浮式风机结果进行对比研究。结果显示,OC4-WindFloat半潜浮式风机固有周期及动态响应均满足相关规定,且具有比OC4更低的建造成本,相比WindFloat可适用更深的海域。研究结果对于浮式基础型式研究有一定的指导意义。  相似文献   

17.
陈刚  吴晓源 《上海造船》2012,(2):7-11,15
深水半潜式钻井平台在码头舾装的周期较长,为确保安全,需对其码头系泊系统进行计算,以得到合理的系泊布置方式。以某深水半潜式钻井平台的码头系泊系统为例,进行风、流载荷共同作用下的抗台风系泊计算分析,建立了多浮体混合带缆系泊系统。  相似文献   

18.
选取5MW-OC4深水半潜式浮式风机平台为参考模型,利用AQWA软件建立半潜式浮式风机平台模型,在频域范围内计算浮式风机平台运动响应,得到平台幅频响应曲线,以验证数值分析的可靠性。选取3种浮式风机平台系泊系统,对比研究系泊系统改变对浮式风机平台运动响应的影响规律,同时分析极端环境条件下单缆失效对浮式平台运动响应及系泊缆张力的影响。计算结果对浮式风机平台系泊系统的优化设计有一定的参考意义。  相似文献   

19.
漂浮式电站潮流能发电机组依托于浮式载体,其系泊系统关系着潮流能电站的安全运行与生存。关于载体系泊系统的研究,目前主要集中在海洋钻井平台方面,而关于以潮流电站为代表的浅水系泊的开发研究相对较少。本文基于漂浮式潮流能电站,设计开发了一套带有弹性索的系泊系统,以悬链线理论为基础,分别分析了系泊系统中加入的弹性索长度及不同水深下对系泊系统的影响。研究发现,当工作水深小于60m的浅水海域时,对于系泊张力的作用显著,张力的最大值可以减少37%,具有极大的工程应用前景。  相似文献   

20.
以工作水深1200m、8缆系泊的半潜式海洋平台为对象,研究其系统定位方法,通过改变锚泊系统系泊缆长度来实现平台的定位。建立反映半潜式海洋平台锚泊系统动力响应的多目标优化模型,通过求解得到船体目标位移与最优系泊缆长度,借助多学科软件iSIGHT,通过开发程序接口,调用水动力分析软件ANSYS/AQWA求解器求解,实现了半潜式平台锚泊系统的结构动力响应优化设计。对半潜式平台进行风、浪、流联合作用下的水动力耦合分析,实时控制系泊缆长度来实现平台的定位并保证平台的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号