首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
针对冷却模块悬置系统结构仿真分析方面,主要考察其振动与疲劳问题,一方面考察汽车在路面行驶时,冷却模块的随机振动激励所产生的疲劳破坏问题;另一方面主要考虑冷却模块的振动特性,首先冷却模块悬置系统的刚体模态频率需要避开发动机二阶点火频率,其次冷却模块的弹性模态频率需要大于风扇运转所产生的频率。本文以冷却模块的振动疲劳破坏的问题为分析目标,对冷却模块的振动特性进行研究,并与实际断裂位置进行对比,分析结果表明仿真分析方法可靠。同时,对冷凝器支架进行相应的优化,可提高冷却模块的随机振动寿命,为冷却模块的优化改进提供依据,并对后续的疲劳寿命分析具有一定的指导作用。  相似文献   

2.
为了建立氢燃料电池汽车试验验证体系,通过分析氢燃料电池汽车的系统构型、燃料电池发动机系统、车载氢系统技术特点,提出了零部件、系统和整车级试项目,初步构建起燃料电池汽车的试验验证体系,从动力经济性、整车安全、热管理、电子电器、振动与噪声、可靠耐久维度进行分析,梳理出燃料电池汽车试验货架1 618项,其中系统及零部件1330项,整车级288项,针对重点试验项目进行详细阐述。结果表明氢燃料电池汽车试验验证体系对项目开发验证有较强的指导意义。  相似文献   

3.
为解决某汽车空调管路由于共振导致的断裂故障,采集空调管路系统的随机振动激励,将其转换为功率谱密度曲线作为激励进行随机振动试验,得到管路的疲劳寿命,然后进行单位载荷的频率响应分析得到频率应力的传递函数,并进行随机振动疲劳分析,通过试验标定管路系统中的橡胶复合材料,分析其对寿命影响的敏感性。结果表明,管路疲劳寿命低于试验要求,其危险点与断裂位置一致。通过在管路共振方向增加支撑支架进行优化设计,优化后管路疲劳寿命满足要求,整车耐久试验结果表明,管路的应力大幅降低,且未发生断裂。  相似文献   

4.
本文介绍了新能源尤其是氢燃料电池汽车的原理、技术特点等,在对其进行环境和产业分析后,对制约氢燃料电池汽车产业化的各种因素进行了探析,认为氢燃料电池汽车产业发展将大有可为。  相似文献   

5.
从燃料电池汽车氢安全的角度对氢气的特性进行分析,研究了车载氢系统、燃料电池系统以及氢管理系统的安全设计,为燃料电池汽车氢安全的设计提供了理论与实际参考。  相似文献   

6.
针对电池箱对振动疲劳耐久性能的要求,结合国标中随机振动的加速度功率谱密度函数和材料的S-N曲线,采用Miner线性累积损伤理论和Dirlik疲劳寿命计算方法,对电池箱进行随机振动条件下的疲劳寿命分析。  相似文献   

7.
随着我国"双碳"目标提出以及燃料电池汽车示范城市群政策落地,2021年氢能及燃料电池汽车产业发展迅速.本文从我国氢燃料电池汽车市场规模、车型结构、竞争格局、技术参数等方面,对我国2021年氢燃料电池汽车市场发展进行了全面回顾,并从政策驱动、产品技术升级以及燃料电池汽车推广过程中面临的问题对2022年发展趋势进行分析,旨...  相似文献   

8.
氢燃料电池技术有可能为汽车、能源工业带来革命性的变化,毫无疑问会使汽车产业的竞争格局、能源供应方式发生根本变化。汽车产业价值链将出现重大的变革,价值链的核心不再是燃油、燃油发动机,而是氢燃料电池、储氢与供氢系统。本文建立氢燃料汽车价值链模型并进行了分析,氢燃料汽车电池、储氢与供氢系统将是新商业模式最大受益者;燃油、内燃机供应商、传统汽车制造商的前景将不容乐观,相关企业需从新的产业链找到位置和突破口,才能在变革中求得发展。  相似文献   

9.
基于氢燃料电池汽车碰撞安全性的研究   总被引:1,自引:0,他引:1  
氢燃料电池汽车作为新能源汽车的代表,近几年得到了政府和企业的广泛关注和发展。针对氢燃料电池汽车的结构特点,提出了氢燃料电池汽车存在的碰撞安全性问题,分析了国内外关于氢燃料电池汽车的碰撞安全标准,给出了解决氢燃料电池汽车碰撞安全性问题的方法。  相似文献   

10.
能源环境问题日益严峻,燃料电池汽车具有能量效率高、零排放等优点,已成为未来汽车行业的发展方向,而燃料电池汽车续驶里程是影响其商业化的关键因素之一。现有的燃料电池汽车续驶里程测试方法,测量前需要先对储氢瓶进行加氢、降温、补氢等操作。考虑到用户在实际使用时可能不会进行补氢操作,本文通过测试与结果分析,讨论了补氢操作对燃料电池汽车续驶里程的影响。  相似文献   

11.
氢燃料电池汽车具有无噪音、零污染、续驶里程长、动力性高、燃料加注时间短等特点,将成为未来的终极环保汽车。文章介绍了美国、欧盟、日本、韩国、中国等国家政府对氢燃料电池汽车的战略规划,对世界著名汽车公司研发、示范与商业化推广氢燃料电池汽车的状况进行了综述,就氢燃料电池汽车的市场发展瓶颈和商业化推广制约因素进行了分析,并对氢燃料电池汽车未来的发展趋势进行了预测与展望。  相似文献   

12.
介绍了燃料电池汽车氢存储面临的挑战,分析了影响燃料电池汽车氢安全的因素,并结合国外的相关资料,对氢燃料电池汽车的道路安全性进行了初步的分析评估。同时,对我国燃料电池汽车道路安全的深入研究提出了建议。  相似文献   

13.
汽车产业的热门趋势是新能源汽车,光伏电池汽车和燃料电池汽车的技术却未被开发,正是最好的发展方向。本文根据燃料电池和光伏电池的工作原理及输出特性,对其进行数学建模,选用双向全桥DC/DC变换器,作为系统控制的一部分,使用传统移相控制正向工作模式,并对其传输功率进行分析。利用matlab/simulink软件对上面的建立的数学模型进行建模仿真,建立出氢燃料-光伏电池汽车动力系统模型。分析研究氢燃料电池和光伏电池的能量控制理论,从而设计出系统级的协调控制与能量管理,即分层能量管理策略。  相似文献   

14.
文章对燃料电池汽车氢喷射器噪声现象、产生原因、传播路径进行了系统的分析,并根据分析结果进行了相应的优化措施,有效地降低了氢喷射噪声。  相似文献   

15.
解析丰田燃料电池轿车Mirai高压储氢系统(上)   总被引:1,自引:0,他引:1  
丰田汽车公司于1992年开始开发燃料电池汽车(FCV: fuel cellvehicles ),此后进行了许多项目研发,以期使这些汽车得到广泛使用。丰田FCHV-adv发布于2008年,采用的是燃料存储压力为70MPa的氢气罐,而不是35MPa的氢气罐。通过各种改善燃料经济性的措施,FCHV-adv的实际续航里程达到了至少500km.继FCHV-adv之后,丰田公司开发了一款新型FCV轿车Mirai(未来),使其量产化。该轿车配备了新型70MPa高压存储系统。新型FCV的储氢系统比FCHV-adv的存储系统质量轻得多,且成本更低。  相似文献   

16.
针对燃油车与氢燃料电池汽车的燃油经济性和动力性,源于某型号汽油车的整车结构参数和动力性能指标,设计了一套适用于氢燃料电池汽车的动力系统,给出动力系统控制策略方案,完成总体布置和整体结构的设计,在对相关部件进行选型计算的基础上,确定氢燃料电池汽车动力系统设计参数。在MATLAB/Advisor平台上搭建氢燃料电池模型、驱动电机模型、动力蓄电池模型及整车模型,采用中国城市工况对所设计的氢燃料电池汽车动力系统性能进行仿真测试,并与原汽油车进行对比分析。结果表明,设计的氢燃料电池汽车的动力性能完全符合实际工况要求;燃油经济性、加速性能和爬坡性能都得到较大提升,燃油经济性提高了17.5%,加速时间提高了11.7%,最大爬坡度提高了1.3%。  相似文献   

17.
结合随机振动理论,以某车型中冷管为例介绍了产品在多通道随机激励下的疲劳分析方法,并分析了中冷管支架在多通道随机激励下的疲劳性能,分析结果显示其失效位置与试验中支架开裂情况一致。根据分析结果,对支架结构进行了优化,并重新分析了疲劳寿命,其寿命结果比原模型有显著改进。由于该方法可以方便、有效地进行疲劳计算,且能够得到比较可靠的结果,所以比较适用于汽车结构件的疲劳寿命分析。  相似文献   

18.
为了验证应用随机振动疲劳分析技术进行寿命预测的准确性,文章以汽车电喇叭支架为研究对象,首先进行模态测试校验有限元模型的准确性,然后通过扫频试验获取支架上某点的加速度曲线,再基于Isight软件确定结构阻尼的大小。通过进行电喇叭支架的随机振动疲劳仿真分析及试验,得出预测寿命为338 min,试验寿命在50~320 min之间。考虑到材料工艺、表面质量和存活率对疲劳寿命的影响,最终预测寿命为48 min。结果表明:由于结构受材料工艺和表面质量等因素的影响,疲劳寿命分布存在一定的离散性。但是,综合考虑各种不利因素的影响,可以准确预测疲劳寿命的下限值,有效地指导结构设计。  相似文献   

19.
<正>燃料电池汽车在被动安全方面具有两个重要特点:一是车内安装有包括燃料电池在内的高电压动力回路,其电压远远超过安全电压;二是有一个高压供氢系统,其氢泄漏造成的危险性很大;相对传统汽车来说,燃料电池汽车对碰撞安全性提出了新的更高要求。基于以上考虑,有必要对燃料电池汽车碰撞试验程序和方法进行研究。燃料电池汽车碰撞试验不同于普通的汽车,和普通的电动汽车相比增加了氢系统和燃料电池堆,其和普通电动汽车碰撞试验类别相同,涉及同样因电池类型、电池在车辆中的布置位置等影响动力电池在进行  相似文献   

20.
作为新能源电池汽车的研究方向之一,插电式氢燃料电池汽车技术已经引起世界各国的广泛关注。随着国家政策的推动,尽管面临一系列制约条件,插电式氢燃料电池汽车仍然得到长足发展。文章主要对当前插电式氢燃料电池汽车的研究现状进行了分析,提出制约其发展的影响因素及相应建议,并对未来插电式氢燃料电池汽车的发展做出预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号