首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Objectives]For marine nuclear power plants, the relative displacement of the pump supported by a vibration isolation system should be strictly restricted. In order to improve the shock resistance of a vibration isolation system with displacement limiters, the parameter optimization and parametric deviation influence are studied. [Methods]The theoretical model of a double-stage vibration isolation system with typical limiter parameters is established, the analysis of the shock response characteristics of the system is carried out using the direct integration method, the optimal limiter parameters are obtained using a genetic algorithm, and the influence of parameter deviation on the shock resistance of the system is studied. [Results]Limiter parameters significantly affect the shock response characteristics of the vibration isolation system. The optimal limiter parameters improve the shock resistance of the system, but parameter deviation has a great influence on shock resistance. Based on the influence of parameter deviation, a deviation control strategy is proposed in which the elastic parameter should have a positive deviation and the gap parameter a negative deviation. The simulation results show that the proposed strategy can effectively alleviate the shock resistance degradation caused by deviation.[Conclusions]The results of this study can be used to guide the design, manufacturing and variation control of limiters for vibration isolation systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

2.
[Objectives]As composite materials have varied internal structures, an in-depth analysis of the damage mechanisms of their component materials can provide a research foundation for the ultimate strength analysis of composite stiffened panels. [Methods]The microscopic, mesoscopic and macroscopic mechanical analyses of marine glass fiber reinforced plastic (GFRP) composite stiffened panels are carried out using a multi-scale approach. Microscopic and mesoscopic representative volume element (RVE) models of chopped strand mat (CSM) and woven roving (WR) materials are established, and the macroscopic equivalent stiffness is obtained by homogenizing the RVE models. The ABAQUS VUMAT subroutine is used to code the progressive damage evolution model of the composite materials to derive the damage evolution mechanism of the microscopic and mesoscopic models respectively. The equivalent strength of macroscopic laminates is also obtained. [Results]The multi-scale approach can be used to accurately evaluate the macroscopic mechanical properties of composite materials, and the ultimate strength of composite stiffened panels is mainly determined by fiber bundle failure. [Conclusions]The obtained macroscopic material parameters can be used to calculate the ultimate strength of composite stiffened panels, while the parametric study of the mesomechanics of composite materials can provide an analysis tool for investigating the influence of material processing technology. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

3.
[Objective]This paper proposes a fuzzy sliding mode controller based on T-S fuzzy logic for the vertical plane motion control of an autonomous underwater glider (AUG) with limited actuator capability. [Methods]In the fuzzy sliding mode controller, the fuzzy switching rate is used to replace the switching rate in the fixed time controller to effectively suppress buffeting. The fuzzy switching rate is obtained by fitting the switching rate of the fixed time controller with T-S fuzzy rules. Based on the limited capabilities of AUG actuators, a saturation auxiliary system is designed to improve the actuator saturation effect. Finally, the performance of the system is verified by Lyapunov stability analysis and numerical simulation. [Results]The results show that the AUG under the fuzzy sliding mode controller and the saturation auxiliary system can converge in finite time. The effectiveness of the fuzzy sliding mode controller and the saturation auxiliary system are verified by numerical simulation. [Conclusions]By making comparisons with the fixed-time controller, it is verified that the two controllers have similar control performance, and the buffeting of the fuzzy sliding mode controller is lesser. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

4.
[Objectives]Aiming at the current situation in which it is difficult to efficiently evaluate protection probability through traditional lightning rod evaluation methods, an efficient numerical evaluation algorithm is developed on the basis of an electrogeometric model (EGM) and attractive volume to realize the efficient calculation of lightning protection probability at any point in space.[Methods]This method first determines the attractive volume boundary of the lightning rod and protection object according to the interception process of the upward and downward leaders. The collection surface and exposure arc of the lightning stroke distance are then calculated, enabling the attractive risk and interception effect of the lightning rod to be quantified. Finally, the attraction and interception characteristics of the lightning rod are integrated to establish a numerical evaluation model of protection probability. To verify the accuracy of this method, the general rule of lightning rod protection probability is analyzed and the results compared with the existing analysis method.[Result]The evaluation results of this method show good agreement with those of classical leader progression model (LPM) theory.[Conclusions] The method proposed herein has a high degree of quantification and can realize the efficient calculation of lightning protection probability at any point in space, which can provide useful references for lightning protection design work. © 2023 Authors. All rights reserved.  相似文献   

5.
[Objectives]This study seeks to expand the bandgap frequency band, reduce the bandgap starting frequency and analyze and optimize the bandgap parameters of acoustic metamaterials. [Methods]The influence of geometrical and material parameters on the bandgap properties of acoustic metamaterials is analyzed, and a method for maximizing the bandgap width is proposed. The multi-objective optimization problem is converted into a single objective optimization problem by normalizing the bandgap frequency coefficients. Structural material conversion is achieved via the material selection optimization method, and the optimization equations of bandgap parameters are established on the basis of weight-lightening. For chiral acoustic metamaterials, the material properties (density and wave velocity) and geometric parameters (scatterer diameter, ligament thickness and coating thickness) are defined as design variables, and the comprehensive optimization of structural parameters and material selection of acoustic metamaterials based on weight-lightening are implemented. [Results]The optimization results show that the bandgap width increases by 27.7% and the lower bound frequency decreases by 1048 Hz, thereby achieving the goal of expanding the bandgap width based on lightweight acoustic metamaterials. The acoustic transmission analysis of the finite chiral acoustic metamaterial structure is then carried out to verify the effectiveness of the proposed method. [Conclusions]The results show that the goal of lightweight acoustic metamaterials can be effectively achieved by integrating the comprehensive optimization of structural parameters and materials. As such, this study provides references for the design of new-type acoustic metamaterials. © 2023 Authors. All rights reserved.  相似文献   

6.
Prediction of Stabilization of Ship in Random Wave   总被引:1,自引:0,他引:1  
In this paper we show thc method of energy in part with which we can get the model of random wave,and predict theroll motion of unstabilized ship and stabilized ship using the wave model.The control parameters of fin stabilizer are determinedaccording to the performance index. The simulation of the system is also made in this paper. The comparison of the simulationwith real ship indicates that the method can be used in the prediction of roll motion of a stabilized ship in random wave.  相似文献   

7.
[Objective]In order to reduce the switching frequency of an intermediate frequency inverter power supply, ensure the quality of the output waveform and realize digitalization easily, a SPWM sampling method based on a tangent-secant midpoint approximation is proposed. [Methods]It is proven by deduction that the quantitative relationship of the natural sampling method can be approximated, and a Matlab/Simulink simulation model is built. The algorithm is designed and applied to an intermediate frequency inverter device, and the correctness of the proposed method is verified in the two aspects of simulation and experiment. [Results]The simulation results show that the total harmonic distortion (THD) of the output waveform based on the tangent-secant midpoint approximation method is 2.64%, lower than the 3.99% of the symmetrical regular sampling method. The waveform quality of the tangent-secant midpoint approximation method is obviously better than that of the symmetrical regular sampling method, as it not only reduces the switching frequency but also takes into account the requirements of THD. [Conclusions]SPWM sampling based on tangent-secant midpoint approximation is applied to the intermediate frequency power supply and is able to effectively overcome the shortcomings of the low-quality output waveform and high switching frequency of the symmetrical regular sampling method. Both theoretical analysis and engineering practice verify the rationality and correctness of the proposed method, and it can be widely extended to the field of intermediate frequency power supply installation. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

8.
The effective method of the recognition of underwater complex objects in sonar image is to segment sonar image into target, shadow and sea-bottom reverberation regions and then extract the edge of the object. Because of the time-varying and space-varying characters of underwater acoustics environment, the sonar images have poor quality and serious speckle noise, so traditional image segmentation is unable to achieve precise segmentation. In the paper, the image segmentation process based on MRF (Markov random field) model is studied, and a practical method of estimating model parameters is proposed. Through analyzing the impact of chosen model parameters, a sonar imagery segmentation algorithm based on fixed parameters' MRF model is proposed. Both of the segmentation effect and the low computing load are gained. By applying the algorithm to the synthesized texture image and actual side-scan sonar image, the algorithm can be achieved with precise segmentation result.  相似文献   

9.
[Objectives]This study focuses on the feasibility of a ship resistance model test in an ice field of small ice floes made of substitute material in order to reveal the resistance components and thereby provide technical support for the design of ice-going ships. [Methods ] Ship resistance test in ice floes made of polypropylene (PP) instead of natural refrigerated ice is conducted. By adjusting the sizes, shapes, numbers of ice floes, the random ice field with a given concentration is generated. The geometric phase transition theory predicts that there exists a critical concentration which divides the random ice field into discrete phase (concentration is less than critical value) and connected phase (concentration is greater than critical value). [Results]The main components of ice resistance in the discrete phase are open water resistance and ship-ice collision resistance, while ice resistance in the connected phase includes ice friction resistance, open water friction resistance and collision resistance. If the fractal dimension of the random ice field is used to redefine the ice resistance coefficient, it is nearly constant in the trial range (speed 0.3–0.9 m/s) when the concentration is smaller than the critical value. When the concentration is greater than the critical value, the ice friction resistance is inversely proportional to speed. [Conclusions]Polypropylene can replace frozen ice in the prediction of ice resistance. The pure ice resistance of an ice field is divided into two components: ice resistance arising from collision and ice friction resistance arising from accumulation. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

10.
[Objectives]To ensure safety and prevent seabed collisions in complex unknown underwater environments, this study proposes a seabed safety domain model and tiered emergency response strategies. [Methods]A vertical motion simulation model is established and verified by surpassing the test results, then used to calculate the active and passive safety domain distance of an autonomous underwater vehicle (AUV), thereby establishing a seabed safety domain model. An AUV emergency control system and emergency strategies are then built on the basis of the dynamic safety domain model. The trim and distance from the seabed of the AUV are used to calculate the current and future risk factors. Based on the weighted sum, the comprehensive risk factor is employed to provide the AUV with emergency response strategies.[Results]Lake tests with the AUV sailing at a fixed depth and height show a strong dependency of the comprehensive risk coefficient on seabed height when it is close to the boundary of the AUV's active safety domain. In the opposite case, there is a weak dependency of the comprehensive risk coefficient on seabed height. The results show that the proposed AUV emergency control system can reduce emergency false alarms caused by frequently changing riverbed heights and sailing altitudes close to the seabed. In such cases, reasonable emergency strategies can be realized under complex rough terrain.[Conclusions]The AUV seabed safety domain model and tiered emergency response strategies based on vertical motion equations proposed herein can be applied to evaluate seabed collision risk in various cases. Finally, this paper provides emergency response strategies to avoid seabed collision accidents, which can enhance the safety of AUV navigation. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

11.
As a new type of hull form, trimaran has remarkable excellent performances and has drawn more and more attention. When the viscous CFD technology now available is applied to the research of resistance performance of trimaran, the spatial discretization would usually result in the grid error and uncertainty, and thus the considerable discrepancy between the numerical results and the experimental data. In order to ascertain how much the grid would affect the calculation, the grid convergence should be studied. A mathematical trimaran was chosen as an example, with the commercial code CFX for the simulation, VOF for surface treatment, and the grid study was carried out based on two different turbulence models. It was concluded that carrying out grid study is helpful in estimating the grid error and uncertainty, and indicating the direction of improving the credibility of the numerical calculation, and, in addition to grid errors and uncertainties, the turbulence modeling errors and uncertainties contribute to the simulation errors.  相似文献   

12.
This paper describes path re-planning techniques andunderwater obstacle avoidance for unmanned surface vehicle (USV)based on multi-beam forward looking sonar (FLS). Near-optimalpaths in static and dynamic environments with underwaterobstacles are computed using a numerical solution procedure basedon an A algorithm. The USV is modeled with a circular shape in 2degrees of freedom (surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time pathre-planning technique for actual USV using multi-beam FLS aredeveloped. Our real-time path re-planning algorithm has beentested to regenerate the optimal path for several updated frames inthe field of view of the sonar with a proper update frequency of theFLS. The performance of the proposed method was verifiedthrough simulations, and sea experiments. For simulations, theUSV model can avoid both a single stationary obstacle, multiplestationary obstacles and moving obstacles with the near-optimaltrajectory that are performed both in the vehicle and the worldreference frame. For sea experiments, the proposed method for anunderwater obstacle avoidance system is implemented with a USVtest platform. The actual USV is automatically controlled andsucceeded in its real-time avoidance against the stationary underseaobstacle in the field of view of the FLS together with the GlobalPositioning System (GPS) of the USV.  相似文献   

13.
[Objective]This paper aims to establish a dynamic model of a floating raft vibration isolation system with a liquid tank in order to study the mass effect of the liquid medium, tank form, structural stiffness and loading rate on acoustic performance. [Methods]A floating raft system with a cuboidal or cylindrical liquid tank is taken as the research object, and a fluid-structure coupling finite element dynamic model is established. The dynamic force transmission rate and power flow are then used to evaluate the acoustic performance of the system. The influence of the mass effect of the liquid medium, tank form, structural stiffness and loading rate of tank volume on the acoustic performance of the floating raft system are analyzed.[Results]The results show similar laws obtained through the calculation and analysis of the floating raft system with two types of tanks. The structural stiffness of the tank affects the mass effect of the liquid medium in the tank to a certain extent. [Conclusions]If full advantage is to be taken of the liquid mass effect in the tank with a large loading rate to improve the acoustic performance of the floating raft system, the design of the liquid tank and raft structure must have sufficient stiffness. In addition, under the condition that the floating raft structure has sufficient stiffness, its acoustic performance will improve significantly as the tank loading rate increases in the relevant low frequency range. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

14.
[Objective]In view of the insufficient safety and reliability of the traditional deterministic vibration analysis of ship propulsion shafting system, the vibration response analysis of the shafting system under uncertain excitation conditions is carried out. [Methods]Using non-random vibration analysis based on non-probabilistic convex model process, the uncertain excitation and vibration response are described in the form of the upper and lower bounds of the interval to reduce dependence on a large amount of excitation sample data. Compared with the calculation results in the relevant literature, the validity of the program for solving the response bound of the two-degrees-of-freedom (2-DOFs) system is verified, and the uncertain vibration problem of the shafting system is then explored on this basis. [Results]The results show that when the shafting system is excited by [−30 N, 30 N] propeller laterally, a displacement response of the magnitude of about 10−6 m is generated at the bearing. It is also indicate that the shafting system is excited in a certain interval, so a certain interval response must be produced. [Conclusions]Applying the non-probabilistic convex model process and non-random vibration analysis to the field of the uncertain vibration analysis of ship propulsion shafting system, the vibration displacement response bound of the shafting under uncertain excitation conditions can be obtained with fewer excitation samples, thereby providing useful references for improving the robustness of the dynamic response prediction of ship propulsion shafting systems. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

15.
[Objective ] To meet the requirements of remotely controlling ship in curved, narrow and crowded inland waterways, this paper proposes an approach that consists of CNN-based algorithms and knowledge based models under ship-shore cooperation conditions. [Method]On the basis of analyzing the characteristics of ship-shore cooperation, the proposed approach realizes autonomous perception of the environment with visual simulation at the core and navigation decision-making control based on deep reinforcement learning, and finally constructs an artificial intelligence system composed of image deep learning processing, navigation situation cognition, route steady-state control and other functions. Remote control and short-time autonomous navigation of operating ships are realized under inland waterway conditions, and remote control of container ships and ferries is carried out. [Results]The proposed approach is capable of replacing manual work by remote orders or independent decision-making, as well as realizing independent obstacle avoidance, with a consistent deviation of less than 20 meters. [Conclusions]The developed prototype system carries out the remote control operation demonstration of the above ship types in such waterways as the Changhu Canal Shenzhou line and the Yangtze River, proving that a complete set of algorithms with a CNN and reinforcement learning at the core can independently extract key navigation information, construct obstacle avoidance and control awareness, and lay the foundation for inland river intelligent navigation systems. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

16.
This paper informally introduces colored object-oriented Petri Nets(COOPN) with the application of the AUV system.According to the characteristic of the AUV system's running environment,the object-oriented method is used in this paper not only to dispart system modules but also construct the refined running model of AUV system,then the colored Petri Net method is used to establish hierarchically detailed model in order to get the performance analyzing information of the system.After analyzing the model implementation,the errors of architecture designing and function realization can be found.If the errors can be modified on time,the experiment time in the pool can be reduced and the cost can be saved.  相似文献   

17.
The structures in engineering can be simplified intoelastic beams with concentrated masses and elastic spring supports.Studying the law of vibration of the beams can be a help in guidingits design and avoiding resonance. Based on the Laplace transformmethod, the mode shape functions and the frequency equations ofthe beams in the typical boundary conditions are derived. Acantilever beam with a lumped mass and a spring is selected toobtain its natural frequencies and mode shape functions. Anexperiment was conducted in order to get the modal parameters ofthe beam based on the NExT-ERA method. By comparing theanalytical and experimental results, the effects of the locations ofthe mass and spring on the modal parameter are discussed. Thevariation of the natural frequencies was obtained with the changingstiffness coefficient and mass coefficient, respectively. The findingsprovide a reference for the vibration analysis methods and thelumped parameters layout design of elastic beams used inengineering.  相似文献   

18.
[Objectives]This paper aims to address the numerical simulation problems of the dynamic response of ships subject to near-, medium- and far-field underwater explosions by establishing several numerical methods and calculation models. [Methods]First, load and fluid-structure interaction models are established on the basis of the Eulerian finite element method and acoustic finite element method using the field-split technique, and FSLAB fluid-structure interaction software is developed. Next, near-, medium- and far-field underwater explosions are numerically simulated respectively. The shock wave propagation law, bubble shape and load evolution characteristics of near free-surface and near-wall underwater explosions are obtained, and the shock response characteristics of a spherical shell and ship subject to far-field underwater explosions are analyzed. Finally, the FSLAB software results are compared with the analytical solutions, reference solutions and experimental data. [Results]The results show that the FSLAB fluid-structure interaction software developed in this paper is effective and accurate in simulating the impact damage of underwater explosions on warships. [Conclusion]This study can provide a basis and support for the power assessment of underwater anti-explosion and shock design of warships. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

19.
Automatic berthing guidance is an important aspect of automated ship technology to obtain the ship-shore position relationship. The current mainstream measurement methods for ship-shore position relationships are based on radar, multisensor fusion, and visual detection technologies. This paper proposes an automated ship berthing guidance method based on three-dimensional(3D) target measurement and compares it with a single-target recognition method using a binocular camera. An improved deep obje...  相似文献   

20.
The problem of stabilization control of underactuated surface vessels with two independent control inputs is in vestigated inthis paper. Through transformation, a cascade property of the system is revealed. And the original nonlinear system could be divided into two subsystems: a linear subsystem and a nonlinear subsystem. The stabilization laws are derived for the two subsystems separately. A smooth time - varying feedback stabilization law with exponentially convergence rate is obtained. The proposed stabilization law guarantees all the system states converge to the equilibrium exponentially. The aim of stabilization control of underactuated surface vessels is achieved. At last, the effectiveness of the proposed algorithm is illustrated by simulation tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号