首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients(CR, CT, and CE) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the CR increases with increasing wave number, kd, and with a decreasing permeable wall part, dm. The CT follows the opposite trend. The CE slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the CR, while increasing the CT. At lower values of kd, a decreasing porosity increases the CE, but for high values of kd, a decreasing porosity reduces the CE. The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd0.5.Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.  相似文献   

2.
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (C r ). The curvature of a perforated plate can be changed by rotating a reference perforated plate aboutits origin according to the parabolic equation y=?x 2. A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.  相似文献   

3.
We investigated the difference in fatigue behaviour between the aluminium alloys A5083-O and A5083-H321, which are used as structural components in ships and high speed craft. We obtained S–N curves for the base materials and the welded joints made of A5083-O. The relationships between the fatigue crack propagation rates and the stress intensity factor ranges ΔK, ΔK eff and ΔK RPG (Toyosada et al. in Int J Fatigue 26(9):983–992, 2004) were determined. Additionally, the evolution of fatigue crack growth for the base materials and the welded joints made of A5083-O was measured. We also carried out numerical simulations of fatigue crack growth for both base metals and their welded joints made of A5083-O. The difference in fatigue crack growth behaviour for each alloy and the validity of the numerical simulations of fatigue crack growth based on the RPG stress criterion (Toyosada et al. 2004) in the base materials and their welded joints was investigated.  相似文献   

4.
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.  相似文献   

5.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

6.
The aim of this study is to calculate hydrodynamic performance and ventilation flow around wedge, 2D blade and 3D surface piercing propeller (SPP), using computational fluid dynamic based on Reynolds-averaged Navier–Stokes method. First, numerical analyses for two-phase fluid flow around the wedge and 2D blade section (cupped and non-cupped) are presented. Flow ventilation, pressure distribution and forces are determined and compared with experimental data. Then, the method is extended to predict the hydrodynamic performance of propeller SPP-841B. The propeller exhibits a cupped blade. In the simulated configuration, SPP is one-third submerged (I = h/D = 0.33) and is working at various loadings with full ventilation occurring at low advance coefficient (J). The open water performance, pressure distribution, forces/moments and ventilation pattern on the SPP-841B model are obtained and compared with experimental data. The numerical results are in good agreement with experimental measurements, especially at high advance coefficient.  相似文献   

7.
The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter δ(=1), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green’s integral theorem with the introduction of suitable Green’s function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.  相似文献   

8.
Successful co-deposition of fine particulate matter within an Electroless Nickel-Phosphorous (ENi-P) matrix is dependent on various factors like bath composition, particle compatibility with metallic matrix, bath reactivity (pH), particle size and their distribution. ENi-P deposits incorporating Al2O3/Alumina in a disperse phase have varied effects on properties and attributes like surface roughness (Ra), microhardness, wear resistance, corrosion resistance and surface morphology of the deposits obtained. This paper experimentally investigates the effect of alumina (1.55 g/L) on Ra, microhardness, surface morphology, deposition rate, wettability, wear resistance and corrosion resistance of ENi-P-Al2O3 composite deposits on mild steel substrates at bath pH 5, 7 and 9. Study reveals that optimum deposit parameters and deposition rates are achieved with bath pH. However, not much study has been undertaken concerning composite deposits obtained from higher bath pH or basic bath. This is attributable to the fact that at higher bath pH or alkaline baths, the bath gets unstable and eventually degrades or decomposes, thereby resulting in sub optimal or poor deposition. Hence, experimental investigations carried out by preparing suitable baths, operating under optimum conditions, and enabling successful composite deposition in acidic and alkaline baths have revealed that there is a significant improvement in the above mentioned properties of the as-deposited composite deposits, as the pH is increased from pH 5 to pH 9. This aspect can therefore be advantageously utilized for preparing various marine components like fasteners, nuts, bolts, washers, pipes, cables, components having relative motion etc.  相似文献   

9.
The marine environmental condition, especially NaCl, has been identified as one of the major sources of contamination on the performance of open cathode Proton Exchange Membrane Fuel Cells (PEMFC) system, when the power source is based on fuel cells for marine applications like submarines, navy ships etc., In the present paper, we have studied the performance of PEMFCs under the marine environment for a longer duration and also the recovery mechanism of the PEMFC power pack after contamination. It has been observed that the NaCl is a major contaminant for PEMFC, compared to NO x and SO x , which are major contaminants for fuel cells operating in the land regions. We have observed a performance loss of 60 % in PEMFC, when operated for 48 h, due to poisoning of PEMFC by NaCl vapours. The recovery of the stack is attempted by repeated water washing on the cathode side of the fuel cell, presuming that the salts get deposited only on the surface of the electrodes and the performance is easily recoverable. The recovery mechanisms are analysed by constant-current discharging operation and by modified experimental methods and are reported here. The performance vagaries in fuel cells due to sea water contamination is also analysed by linear fit and it is found that the rate of power increment after water wash is higher than the rate of power increment, around 11.5 W/10?h compared to normal environmental conditions, which is 4.1 W/10?h.  相似文献   

10.
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring. Also, local scouring occurs around the submerged vanes over time, and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering. The most important aim of this study is investigation of scour pattern around submerged vanes located in 180° bend experimentally and numerically. Firstly, the effects of various parameters such as the Froude number (Fr), angle of submerged vanes to the flow (α), angle of submerged vane location in the bend (θ), distance between submerged vanes (d), height (H), and length (L) of the vanes on the dimensionless volume of the scour hole were experimentally studied. The submerged vanes were installed on a 180° bend whose central radius and channel width were 2.8 and 0.6 m, respectively. By reducing the Froude number, the scour hole volume decreased. For all Froude numbers, the biggest scour hole formed at θ?=?15°. In all models, by increasing the Froude number, the scour hole volume significantly increases. In addition, by increasing the submerged vanes’ length and height, the scour hole dimensions also grow. Secondly, using gene expression programming (GEP), a relationship for determining the scour hole volume around the submerged vanes was provided. For this model, the determination coefficients (R2) for the training and test modes were computed as 0.91 and 0.9, respectively. In addition, this study performed partial derivative sensitivity analysis (PDSA). According to the results, the PDSA was calculated as positive for all input variables.  相似文献   

11.
The present review examines the research literature on Non-Technical Skills (NTS) used by ships’ bridge officers in connection with navigation. The aim of the study was to (i) identify the cognitive and interpersonal skills which have been the focus of previous studies and (ii) explore how the content of these skills has been described. Databases searched included Academic Search Premier, PsycINFO, Science Direct, and Web of Science. Nineteen studies were included in the review. Five NTS were identified: situation awareness (SA), decision-making (DM), workload management (WM), communication, and leadership. In addition to discussing each skill, the review raises four overarching issues with the present literature for the bridge domain: (1) Have all the relevant skills been subject to exploration? (2) Have the skills identified been explored in detail? (3) There seems to be an uneven distribution of research between cognitive and interpersonal skills. (4) There is little research into understanding the skills as a complete taxonomy. Knowledge on how the skills are linked and interplay with one another is incomplete. Overall, further research on all these aspects of NTS in the maritime domain could increase scientific understanding and contribute to bridge operational practice and to the further development and evaluation of NTS training such as Bridge Resource Management (BRM).  相似文献   

12.
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp0.6, are assumed.  相似文献   

13.
14.
This study evaluates the capability of the Simulating WAves Nearshore (SWAN) wave model (version 41.01) in predicting significant wave height and spectral peak energy content for swell waves in very shallow water of surf zone during depth-induced wave breaking and dissipation. The model results were compared with field measurements at five nearshore stations. The results demonstrated that some breaker index formulations were successful for significant wave height prediction in surf zones. However, an incorrect shape of the energy spectrum and overestimated near spectral peak energy content at shallow water stations were obtained using all of the embedded depth-induced wave breaking formulations in SWAN. The dependent breaker index on relative depth (Kpd) formulation, which was successful in predicting near spectral peak energy content, resulted in an average error of 30%. Finally, this formulation was modified to enhance the model performance in reproducing the spectral peak energy content.  相似文献   

15.
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice against conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, primary quantitative criterion of the ratio of a cone width at waterline (D) to sea ice thickness (h) is proposed. If the ratio is less than 30 (narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50 (wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.  相似文献   

16.
Vortex-induced motion of two-dimensional circular cylinder was numerically analyzed by using the lattice Boltzmann method. Unlike conventional methods, in which the computational grids are fit to the solid body, the present method adopts rectangular grids and the movement of the solid body was treated by the boundary condition for the simplicity of computation. The hydrodynamic force acting on the cylinder was estimated by integrating the momentum of the fluid over the cylinder surface. The quantitative validation of the simulation results was confirmed for the fixed cylinder at Re = 500. When the cylinder is allowed to move only in the spanwise direction, the resonance between the vortex-shedding frequency and the natural frequency of damping force by spring was confirmed. When the natural frequency is larger than the vortex-shedding frequency, secondary mode appears which may be resulted from the nonlinear effect. Finally, the motion in the streamwise direction is considered as well as the spanwise direction and the characteristic of the cylinder motion in the horizontal direction was demonstrated in relation to the damping force by the mooring. Although the target of the present study is limited to two-dimensional and low Re, the applicability of the lattice Boltzmann method to vortex-induced motion was confirmed.  相似文献   

17.
The performance of a slotted breakwater consisting of one row of vertical slots was investigated theoretically and experimentally under normal regular waves. A simple theoretical model based on an eigenfunction was developed. The wave transmission, reflection, energy loss, and hydrodynamic force exerted on the breakwater were calculated for different values of the wave and structure parameters. The validity of the theoretical model was examined by comparing its results with theoretical and experimental results obtained from different studies. It was found that the transmission coefficient decreases with increasing dimensionless wavenumber (kh), increasing wave steepness (H i/L), and decreasing breakwater porosity (ε). The reflection coefficient showed the opposite trend to the transmission coefficient. Also, about 20–50% of incident wave energy was lost due to the effect of the breakwater. In addition, the proposed theoretical model can be used for predicting the performance of slotted breakwaters and the hydrodynamic forces exerted on these structures using the friction coefficient f = 1.5.  相似文献   

18.
Currently, second generation intact stability criteria are being developed and evaluated by the International Maritime Organization (IMO). In this paper, we briefly present levels 1 and 2 assessment methods for the criteria of pure loss of stability and parametric roll failure modes. Subsequently, we show the KGmax curves associated with these criteria. We compute these curves for five different types of ships and compare them with the curves embodied in the current regulations. The results show that the safety margin ensured by the first level-1 method of calculation for both pure loss of stability and parametric roll seems to be excessive in many cases. They also show that the KGmax given by the second level-1 method and by the level-2 method may be very similar. In some cases, the level-2 method can be more conservative than the second level-1 method, which is unanticipated by the future regulation. The KGmax curves associated with parametric roll confirm that the C11 container ship is vulnerable to this failure mode. The computation of the second check coefficient of parametric roll level 2 (C2) for all possible values of KG reveals the existence of both authorized and restricted areas on the surface formed by both the draft and KG, which may replace the classical KGmax curves. In consequence, it is not sufficient to check that C2 is lower than the maximum authorized value (R PR0) for a fixed ship’s loading condition.  相似文献   

19.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号