首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
文章介绍了一种在室内模拟汽车道路制动试验的测试系统,该系统不仅可作为汽车防抱死制动系统ABS实验教学的设备,亦可作为开发ABS的前期试验装置。  相似文献   

2.
具有ABS的汽车制动性能实验模拟系统   总被引:1,自引:0,他引:1  
杨启梁  严运兵 《汽车科技》2003,(5):40-41,48
介绍了一种在室内模拟汽车道路制动试验的测试系统,该系统不仅可作为汽车防抱死制动系统(ABS)实验教学的设备,亦可作为开发ABS的前期试验装置。  相似文献   

3.
制动系统相关故障和行车间距不足是导致载货汽车追尾和侧翻事故的主要原因,通过制动危险状态及其影响因素的分析,搭建车辆在途状态检测装置,获取载货汽车载荷、车速、制动系统状态数据;基于传感器数据进行了制动蹄片磨损程度异常、制动蹄片温度异常状态和制动灯故障等单参数制动危险状态辨识;通过对制动过程中车辆进行动力学分析,建立了多参数制动距离计算模型,为标定模型参数,设计并完成了车辆滑行试验;通过仿真及实车试验,对载货汽车制动距离模型的有效性进行了验证。基于多参数制动距离模型,提出了一种检测载货汽车制动过程中的危险状态的方法。  相似文献   

4.
◆制动失灵怎么办 当制动系统出现问题时.汽车仪表板上的制动报警灯闪亮,这时应立即减速将车开到路旁.检查并排除故障,或与站联系维修,待问题解决后再继续行驶。现代汽车制动系统多为双通道式,因而刹车灯亮后。可能只有一个制动通道出现问题.此时制动系统还没有完全失灵。制动时,要在制动踏板上多踏几脚。可在较长的制动距离内将车刹住。  相似文献   

5.
为研究与优化汽车制动踏板感觉,对汽车制动系统进行动力学理论分析,基于AMESim建立制动踏板感觉仿真模型,利用实车动态试验验证了模型的准确性,基于建立的模型研究了汽车制动系统各部件参数和踏板踩踏速度与制动踏板感觉的关系,引入制动踏板感觉指数(BFI)对试验车进行了客观评价,并提出制动系统的改善方案。试验结果表明,调整踏板杠杆比、制动器等效弹簧刚度等制动系统参数能够显著提升车辆的制动踏板感觉。  相似文献   

6.
针对汽车制动工况的复杂环境,从系统的可靠性和实时性入手,基于CAN总线的可靠性高、传输速率快、扩展性好等特点,设计了一种新型的汽车制动蹄片测温系统。本文主要介绍了该系统的硬件、软件模块的设计和部分抗干扰措施。试验表明:本系统的设计是合理的,能够很好的实现温度的测量与传输。  相似文献   

7.
介绍了凌志LS400汽车防抱死制动系统(ABS)的结构,根据该车制动时出现的抱死现象,分析了制动抱死故障的检修过程。  相似文献   

8.
王烁宇  郭鹏  徐振宁  安林春 《时代汽车》2023,(6):105-108+156
制动能量回收作为车辆应用中一项十分重要的技术,也是影响新能源汽车续航能力、能量经济性、制动安全性以及制动舒适性等性能的重要因素,部分车企已经明确提出停止生产销售传统燃油汽车的截止时间。因此,深入研究制动能量回收系统是普及现代新能源汽车的一个重要措施。本研究综述了国内外能量回收的研究现状、回收方式和控制策略等内容,指出了制动能量回收系统今后重点发展的研究方向,旨在为研究者提供参考。  相似文献   

9.
一、系统工作原理 JN4171汽车列车制动系统的挂车控制部分,如图1所示。其系统工作原理如下所述。 1.主车部分 主车部分控制挂车制动的信号由挂车控制阀的2口输出,其压力为P_2(以下压力表达仿此)。P_2受41、42、43口的压力P_(41)、P_(42)、P_(43)控制。41.42口分别接主车前后桥制动输出,43口接驻车制动阀输出口22,P_(43)=P_(22)。  相似文献   

10.
本文对汽车道路试验用车轮多维力传感器及测试系统进行介绍,该车轮力传感器采用改进型轮幅式结构作为多维力传感部分,在不改变车轮距的要求下实现了单胎和双胎安装。提出一种合理的应变片布片和组桥方式,实现了多维力解耦测量。研制了非接触型信号传输耦合器,使旋转件与非旋转件之间的信号传输可靠和精度高,在汽车道路试验中应用表明,该传感器能够测量汽车行驶过程中的扭矩、垂直力和纵向力,为汽车制动性能的分析提供了定量数据。  相似文献   

11.
试验构建鼓式制动器的摩擦模型   总被引:1,自引:0,他引:1  
针对鼓式制动器在高制动初速、高气压下制动力矩的台架试验值与设计值存在较大偏差的问题,对试验测量的制动器制动力矩进行二元线性回归分析,建立了鼓式制动器的幂函数摩擦模型。进行了显著性检验和失拟性检验,检验结果验证了所建立的摩擦模型有效,可提高整车制动效能模拟计算精度。  相似文献   

12.
A Traction Control System (TCS) is used to avoid excessive wheel-slip via adjusting active brake pressure and engine torque when vehicle starts fiercely. The split friction and slope of the road are complicated conditions for TCS. Once operated under these conditions, the traction control performance of the vehicle might be deteriorated and the vehicle might lack drive capability or lose lateral stability, if the regulated active brake pressure and engine torque can’t match up promptly and effectively. In order to solve this problem, a novel coordinated algorithm for TCS is brought forward. Firstly, two brake controllers, including a basic controller based on the friction difference between the two drive wheels for compensating this difference and a fuzzy logic controller for assisting the engine torque controller to adjust wheel-slip, are presented for brake control together. And then two engine torque controllers, containing a basic PID controller for wheel-slip control and a fuzzy logic controller for compensating torque needed by the road slope, are built for engine torque control together. Due to the simultaneous and accurate coordination of the two regulated variables the controlled vehicle can start smoothly. The vehicle test and simulation results on various road conditions have testified that the proposed method is effective and robust.  相似文献   

13.
通过制动抖动整车道路再现试验和DYNAMO试验台的制动器台架试验研究,确定了制动器制动力矩的波动(BTV)向转向盘传递的主要途径,并考察了传递途径中各个零部件对制动抖动的吸收与放大,为寻求传递途径的衰减控制措施奠定了良好的基础。  相似文献   

14.
A cooperative control algorithm for an in-wheel motor and an electric booster brake is proposed to improve the stability of an in-wheel electric vehicle. The in-wheel system was modeled by dividing it into motor and mechanical parts, and the electric booster brake was modeled through tests. In addition, the response characteristics of the in-wheel system and the electric booster brake were compared through a frequency response analysis. In the cooperative control, the road friction coefficient was estimated using the wheel speed, motor torque, and braking torque of each wheel, and the torque limit of the wheel to the road was determined using the estimated road friction coefficient. Based on the estimated road friction coefficient and torque limit, a cooperative algorithm to control the motor and the electric booster brake was proposed to improve the stability of the in-wheel electric vehicle. The performance of the proposed cooperative control algorithm was evaluated through a hardware-in-the-loop simulation (HILS). Furthermore, to verify the performance of the proposed cooperative control algorithm, a test environment was constructed for the anti-lock braking system (ABS) hydraulic module hardware, and the performance of the cooperative control algorithm was compared with that of the ABS by means of a HILS test.  相似文献   

15.
针对客车发动机制动、排气制动的制动扭矩比较小的问题,提出采用发动机制动、排气制动与缓速器联合作用的持续制动方式,并且针对汽车在山区道路下坡行驶过程中对稳定车速的要求,进行了相应的控制系统设计。模拟分析结果表明:该控制系统可以保证汽车在不采用行车制动器的条件下,利用发动机制动、排气制动与缓速器联合作用的持续制动方式,在各种坡度的坡道上以希望的车速稳定下坡行驶,为汽车在山区道路连续下坡行驶的制动安全性提供了一个合理的解决方案。  相似文献   

16.
FZD-9010B制动试验台为滚筒反力式制动试验台,是目前用于车辆制动性能检测的常规设备。基于虚拟仪器的FZD-9010B制动试验台检测系统可以实现制动力的动态、实时检测并可得制动过程的制动力曲线。针对于制动力检测系统的标定问题,笔者阐述一种有效的标定方法,通过设计一个杠杆机构,并借助标准砝码来实现的。该方法具有结构简单、有效、易于操作和实施的特点。  相似文献   

17.
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,此时虽可通过截断异侧对应电机制动力矩输出来保证行驶方向,但会使车辆制动力大幅衰减或丧失,同样不利于行车安全。为了解决此问题,提出并验证一种基于电动助力液压制动系统的制动压力补偿控制方法,力图有效保证整车制动安全性。以轮毂电机驱动汽车为例,首先建立了整车动力学模型以及轮毂电机模型,通过仿真验证了回馈制动失效的整车失稳特性以及电机转矩截断控制的不足;然后,建立了电动助力液压制动系统模型,并通过原理样机的台架试验验证了模型的准确性;接着,基于滑模控制算法设计了制动压力补偿控制器,并在单侧电机再生制动失效后的转矩截断控制基础上完成了液压制动补偿控制效果仿真验证;最后,通过实车试验证明了所提控制方法的有效性和实用性。研究结果表明:在分布式驱动电动汽车单侧电机再生制动失效工况下,通过异侧电机转矩截断控制和制动系统的液压主动补偿,能够使车辆快速恢复稳定行驶并满足制动强度需求。  相似文献   

18.
有效、快速的道路状况自动识别对于提高ABS性能具有重要意义。通过仿真试验分析,提出了一种比传统方法更快更高效的路面识别方法,并设计了以滑移率为控制目标的ABS模糊神经网络控制器。结合车辆模型熏对单一附着系数路面和变附着系数路面进行了ABS制动模拟试验。结果表明熏基于路面自动识别ABS模糊控制系统能快速、准确判断出路面状况的变化熏自动调整、优化控制器控制参数熏使车辆获得最大地面制动力,与传统利用车身加速度进行路面识别的逻辑门限控制器相比,该控制器反应更灵敏,控制更精确。  相似文献   

19.
This paper investigates the brake corner system to reduce brake torque variation in the brake judder problem. A numerical model for determining brake torque variation was constructed using the multi-body dynamics model. Using this model, the brake torque variation for a given disc thickness variation was obtained in the time domain. The multi-body dynamics model was verified by a dynamometer test via the comparison of brake torque variation and load distribution patterns of the pad. To reduce the simulation time and cost required to determine factors that influence the reduction in brake torque variation, a simple mathematical model was constructed and used to determine both the brake torque variation and influential factors. The multi-body dynamics model and dynamometer test were modified on the basis of the results of the simple mathematical model and deformed shape of the multi-body dynamics model. These influential factors were verified to reduce the brake torque variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号