首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于快速路实测数据和微观仿真数据,从交通流基本图、交通流状态空间传播、匝道与主线流量关系和车道横向分布特征4个方面对比了匝道合流区与基本路段的交通流特征.结论表明:由于匝道车辆汇入的影响,匝道合流区与基本路段的交通流特征存在较大的差别,在城市快速路的规划、设计、管理和控制中都应该区别对待.  相似文献   

2.
为了研究快速路匝道与其主线合流区的交通流特征关系,选用南京长江大桥入口作为数据 采集点,观测其汇入路段的交通流,并对交通流速度、密度等宏观参数和换道次数、可接受间隙等微观特征变量进行了相关性分析。研究发现,速度、密度、换道次数和可接受间隙之间存在非 线性相关性。基于此,构建了主线车道车速与密度、换道次数和可接受间隙之间的非线性关系模型。快速路匝道与主线合流区是快速路的主要瓶颈路段,结合宏观交通参数模型和微观间隙接受模型,阐述了快速路主线和匝道汇入车流的交通参数数学关系。实测数据拟合结果表明,该模型能够准确描述匝道与主线合流区的交通流特性。  相似文献   

3.
文章研究快速路单双平行式汇入匝道对快速路主线交通流运行状态的影响。借助微观交通仿真软件VISSIM,对不同交通需求情况下两种匝道形式的快速路汇入部分进行仿真,通过采集主线交通流的车速、延误、流量等数据,分析得出当主线和汇入流量的流量/通行能力比率(v/c)小于0.7时,单双平行式汇入匝道对主线交通流的运行状态的影响差别不大,且主线仍能保持较高的速度运行,此时选择匝道形式更多应考虑土地空间、建设成本等因素;当主线和汇入流量的v/c超过0.7时,单双平行式汇入匝道主线交通流车速波动呈现截然相反的情况,此时根据交通需求选择匝道形式对提高快速路运行效率有更重要的意义;当交通流趋于饱和流时,单双平行式汇入匝道在主线运行状态上差别不大。对主线三车道交通流车速—流量分析得出,双车道平行式汇入匝道,主线交通流呈现明显的自由流和拥堵流两级分化的局面,单车道平行式汇入匝道,主线交通流各状态过渡平缓。  相似文献   

4.
讨论了城市快速路匝道合流区汇入车辆的车辆折算系数(PCE)计算的理论和方法。基于上海市快速路实测数据,从匝道车辆汇入主线的过程分析出发,考虑各类车型车身长度、车辆性能和主线外侧车道车头时距分布等因素对车辆汇入主线的影响,根据间隙接受理论和不同主线流量下各类车型的匝道汇入能力,建立了匝道合流区汇入车辆折算系数模型,并给出了在充分加速汇入和停车汇入两种汇入模式下PCE的建议值。研究表明:PCE值与汇入模式和主线外侧车道流量有很大关系,其与主线外侧车道流量呈正相关性,在同等主线外侧车道流量下,充分加速模式较停车汇入模式的PCE值小;在计算匝道合流区通行能力时不应对汇入车辆的PCE简单的取一定值。  相似文献   

5.
快速路匝道交织区是城市道路网络中的典型瓶颈,快速路匝道流量的控制对改善交通瓶颈具有重要意义。传统的匝道控制方法具有滞后性、参数标定困难等局限。本文改进了匝道合流区的元胞自动机模型,应用元胞自动机模型对匝道绿信比的控制效果进行快速仿真计算,并基于仿真结果优选信号控制方案。仿真结果表明,基于元胞自动机模型的快速路匝道汇入流量控制方法能提高快速路匝道瓶颈的运行效率,具有较好的前瞻性、稳健性和可移植性。  相似文献   

6.
近年来交通领域能源消耗问题备受关注,本文从微观交通能耗预测出发,以实现北京市快速路基础路段的油耗预测为目的,基于出租车车载OBD/GPS终端,提取驾驶员微观驾驶行为数据,建立基于主成分分析与BP神经元网络的油耗组合预测模型,实现北京市快速路基础路段油耗的准确预测.结果表明:速度均值及标准差、最大车速、工况百分比、加速度及减速度均值、行驶距离和动能对油耗影响程度相对较高;同时模型能够实现城市快速路基础路段能耗的有效预测,预测精度达到92.46%.该方法的研究为城市交通能源消耗的监管与把控提供了支持.  相似文献   

7.
针对城市快速线形路段特点,必须对入口匝道进行控制才能解决交通拥堵问题.基于需求的定义,把匝道入口处的车辆分为3个等级.采用基于交通需求的起始-到达模型,让具有城市快速路优先使用权的车辆驶入,达到保证优先级别高的车辆先行,使城市快速路运行在最优状态.计算了一段包括4个出入口的4车道城市快速线形路段在某一天08:30~10:00时间段的入口匝道调节率和相对路段的交通量,同时得到等级较低的车辆需要绕行的数量.  相似文献   

8.
为研究车车通信技术条件下车辆通过合流影响区时的运行情况,缓解快速路交通压力,提出车车通信环境下入口匝道车辆速度控制模型。首先,分析合流影响区车辆汇合存在的问题;然后,结合合流影响区车辆行驶速度需求,确定入口匝道车辆在加速车道上可汇合位置;接着,根据入口匝道车辆和主路最外侧车道车辆分别到达合流影响区汇合点的时间,建立入口匝道车辆汇入的车速控制模型;最后,对传统环境下和车车通信环境下车辆驶过合流影响区进行仿真。结果表明,在给定的仿真时间段,车车通信环境下,主路和匝道交通量分别为1 000veh/h和400veh/h时,合流影响区的交通量提高了19.5%,入口匝道车辆的平均行驶时间节约了26.9%、平均行驶速度提高了19.7%;主路交通量为1 800veh/h、匝道交通量为800veh/h时,传统环境下合流区车辆出现排队现象,车车通信环境下无排队现象。  相似文献   

9.
快速路多匝道协调控制是一种有效解决城市交通拥挤问题的方法,考虑下游交通需求的宏观动态交通流模型与匝道排队模型为快速路系统控制提供交通需求信息.根据匝道排队状况,主线交通运行状态确定汇入主线的交通量.以系统总行程时间最短为控制目标,控制目标函数考虑了匝道调节率的变动引起的运行状态变化对最优值的影响.  相似文献   

10.
在快速路系统中,出入口匝道是联接快速路与地面道路的纽带,同时也是最易发生拥堵的瓶颈路段。针对快速路出口匝道车辆拥堵问题,建立拥堵条件下的快速路出口匝道交叉口与下游交叉口协同控制模型,由两个子模型组成,分别是目标交叉口通行能力最大优化模型和下游交叉口车辆疏散最大优化模型。前者旨在提高出口匝道的通行能力,后者旨在保障目标交叉口方向来车到达下游交叉口后尽快疏散,案例分析结果表明:在快速路出口匝道拥堵疏解路径中,该模型求得的交叉口信号配时方案比采用Webster配时模型求得的单点信号配时方案在通过车辆数、车均延误以及平均排队长度方面分别优化了18%、22.3%和71.6%,大大加快了出口匝道拥堵疏解效率。  相似文献   

11.
通过分析瓶颈路段车辆的微观行为,基于汽车燃油消耗微观模型提出了瓶颈路段的燃油消耗计算方法,并运用仿真软件进行验证,在此基础上探讨了瓶颈路段的燃油消耗规律。结果表明车辆经过瓶颈路段时增加的燃油消耗主要来源于车辆进入瓶颈时的减速、怠速及加速过程,车辆由瓶颈驶向下游路段的燃油消耗没有因为加速工况的存在而大于无瓶颈对照路段的燃油消耗,且交通量越大交通流燃油消耗受瓶颈的影响越大。  相似文献   

12.
车路协同系统(IVICS)是保障安全高效出行的新兴技术之一,将高精度车辆轨迹数据与机器学习方法相结合,提出一种可应用于 IVICS 的多车道交织区的潜在风险判别与冲突预测方法。首先,基于无人机视频,从广域视角提取交织区交通矢量位置、速度等信息,并划分上下游、交织影响区等多个分区;然后,考虑决策行为(车车边缘距离、接近率)与车辆行为(横纵向速度、加速度、速度角度)构建风险判别模型,以单位面积冲突次数、持续时间、冲突密度等指标评估风险;最后,基于朴素贝叶斯模型与logistic回归模型分别进行交通冲突预测,与实测数据相比,预测准确率分别为74.86%、87.10%,Area Under Curve分别为0.84、0.88,表明logistic回归模型具有更好的预测性能。研究成果有助于交管部门制定与优化交通管控方案,可应用于IVICS动态预警。  相似文献   

13.
为分析高速公路中道路瓶颈造成的堵塞现象,本文改进KKW (Kerner-Klenov-Wolf) 模型, 建立跟驰规则;综合考虑车间距和车速对车辆换道的影响,建立自由换道和强制性换道规则;并对高速公路中不同车流量条件下,道路瓶颈上游的堵塞区域分布、换道行为特征和车道上交通参数的变化情况进行仿真研究。结果表明:在给定的交通量条件下,汇流车道的拥堵区域长度处于动态平衡状态,不会随时间而变化,且道路瓶颈前的汇流行为会导致目标车道上严重的速度下降,汇流车道和目标车道上车辆速度变化趋同;从换道集群特征来看,道路瓶颈前因高交通流量形成的低速汇流车辆倾向于以小集团的方式统一进行换道,造成目标车道上剧烈的交通震荡;瓶颈消失后,交通恢复时间随进口交通流量的上升而线性增长。  相似文献   

14.
匝道车辆的汇入行为对高速公路交织区的通行能力有重要的影响,汇入位置是汇入行为中最重要的行为参数之一.本文利用梯度提升决策树(GBDT)建立了一个车辆汇入位置模型并对各变量进行了分析.考虑到汇入行为是一个二维驾驶行为,我们在模型中引入了车辆进入辅助车道时的初始横向位置这一变量.利用NGSIM中的车辆轨迹数据对模型进行训练,并与Lognormal 进行对比.结果表明,GBDT模型在AIC,BIC 和R2这3个指标上均大幅优于Lognormal模型.最后,本文对解释变量的重要性和其偏效应进行了分析,其中初始横向位置的重要性最高;敏感性分析表明,GBDT模型能够深度挖掘汇入位置与变量之间隐藏的非线性关系.  相似文献   

15.
为探索城市干线短交织区交通运行特性,基于高精度车辆轨迹数据,提出细化元胞尺寸与步长的交织区元胞自动机多级换道决策模型.划分上下游、交织影响区等多个分区,独立设置变量与规则进行建模;考虑车辆换道速度差、间距及换道安全风险,建立上下游换道模型,交织影响区多级换道决策模型;对未分区换道模型(I),分区STCA换道模型(II),分区多路合流换道模型(III),本文模型(IV)进行仿真验证.与实测数据相比,本文模型平均车道流量误差仅为 1.64%. 模型 I~IV 在交织影响区的平均速度误差分别为 98.35%、23.77%、16.46%、7.45%,换道次数误差分别为33.34%、97.75%、62.97%、11.85%.结果表明,本文模型能有效模拟短交织区复杂的换道行为及交通流特性.  相似文献   

16.
针对现有基于车轴温度固定阈值的故障检测系统适应性差且误报率、漏报率高的问题, 综合考虑列车速度、环境温度与运行工况等因素对轴温的影响以及各因素之间的关系, 建立了高速列车轴温动态阈值预测模型; 考虑高速列车在不同运行工况下轴温变化的差异特征, 将列车运行状态分为加速、匀速和减速3个阶段, 并针对每个阶段运用皮尔逊相关系数法分析列车速度、环境温度、荷载等原始监测数据以及各阶段运行时间、初始轴温等衍生数据与轴温的相关程度; 提取与轴温变化密切相关的因素, 基于多元回归分析方法, 针对列车的3个运行阶段, 分别建立基于原始监测数据的轴温动态阈值预测模型和基于原始监测数据与衍生数据的改进轴温动态阈值预测模型, 并采用F检验方法对模型的有效性进行检验, 基于中国高速列车实测轴温数据对模型的正确性进行了验证。研究结果表明: 列车在加速、匀速与减速3个阶段中, 轴温真实值与改进轴温动态阈值预测模型预测值的平均相对误差分别为2.0%、4.1%和3.3%;相对于基于原始监测数据的轴温动态阈值预测模型, 3个阶段中改进轴温动态阈值预测模型的预测精确度分别提高了79.8%、64.3%和65.6%;改进预测模型的决定系数大于0.99, 显著性概率小于0.05, 表明模型有效。   相似文献   

17.
基于优化PSO-BP算法的耦合时空特征下地铁客流预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡惯性权重的粒子群优化(PSO)算法,优化了BP神经网络,形成了考虑复杂因素影响的地铁客流预测系统;选取了换乘站、非换乘站的首站与中间站,引入天气、节日、非节日因素,对比了不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差。研究结果表明:考虑天气、节日、非节日因素,换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了40.13%、31.46%和23.89%,较分时段的BP神经网络模型分别平均下降了17.50%、17.86%和17.32%;非换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了16.50%、20.99%和32.59%,较分时段的BP神经网络模型分别平均下降了11.48%、12.10%和17.73%;各站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差、平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了24.37%、24.48%和29.69%,较分时段的BP神经网络模型分别平均下降了13.49%、14.02%和17.59%,因此,利用考虑多影响因素的优化PSO-BP神经网络模型能提高地铁客流预测的准确性。   相似文献   

18.
为准确把握空域单元交通流量的变化趋势和周期性波动规律,综合考虑气候、季节、交通需求等因素,通过分析中长期历史流量数据,在线性增长模型的基础上,建立了考虑周期性波动因素的空中交通流量动态线性改进模型,采用贝叶斯状态估计和预测方法对模型进行求解,提出了一种根据空域单元流量时序数据预测中长期流量及其变化趋势的预测方法.利用国内典型空域单元实际流量数据,对比分析了上述两种模型的预测性能.实例研究表明:与线性增长模型的预测结果相比,本文模型的流量预测结果更符合我国的实际情况,反映了流量周期性波动特点,年流量预测结果的平均绝对误差从3.14%下降到了1.71%,预测误差的标准差从2.01%下降到了0.02%.   相似文献   

19.
高速公路交通流处于高峰时,公路主线路段可能出现拥挤的瓶颈路段,导致车辆运行时间增加,路段运行效率降低等问题.本文从高速公路瓶颈区域路段交通流运行的时空特征出发,对现有的Papageorgiou模型进行扩展并考虑速度控制因素,使其适用于可变限速控制环境下的真实交通流运行状态,提出了适用于高速公路瓶颈区域的可变限速控制条件的改进模型,以控制周期内总通行量最大和车辆总行程时间最小为目标,建立高速公路主线可变限速控制优化模型.仿真结果表明,相对于固定限速控制,本文提出的可变限速控制方法可降低总行程时间7.45%,提高平均速度8.78%,表明该可变限速控制模型能在一定程度上缓解高速公路瓶颈区域的拥堵问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号