首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic impedances of foundations include dynamic stiffness and damping which have important effect on the internal forces in the structure. In some cases, such as offshore wind turbines, the influence of the foundation impedances on the system's natural frequency and overall damping could potentially have a significant effect on the fatigue life of the structure. The vertical, horizontal and rocking impedances of a skirted foundation (also termed bucket foundation in offshore wind industry) embedded in a fully saturated poroelastic seabed are addressed in this paper. The vertical impedance is most relevant for jacket foundations supported on three or four bucket foundations, while horizontal and rocking impedances are applicable for mono-bucket foundations. The dynamic vibration problems are solved semi-analytically with the help of dual integral equations and Green's functions. Numerical results for dynamic impedances are obtained; damping ratio are also obtained to show the importance of radiation damping for bucket foundations, even at very small excitation frequencies. The influence of length-to-radius ratio, Poisson's ratio, permeability of soil, excitation frequency and thickness-to-radius ratio on the impedances are also studied. Besides, the dynamic load sharing among the top plate, bucket shaft and bucket tip is obtained for vertical load, horizontal load and moment to shed light on the carrying mechanism of bucket foundation at dynamic working loads. It is found that for a rigid bucket foundation, even when the length-to-radius ratio is small (e.g. l/a = 1.0), most of the loads are carried by the shaft, while the top plate and tip of the bucket take only a small portion of the loads. The results of this study will be helpful for understanding the load-carrying mechanism of offshore bucket foundations for normal operation conditions.  相似文献   

2.
吸力式桶形基础作为一种新型的海上风机基础,正逐渐以单桶或者多桶组合形式被应用于海上风机支撑基础设计中。然而目前对应用于海上风机基础的桶形基础的极限承载力的研究仍存在研究不全面和结果不统一的问题。本文以宽浅型单桶基础为例,采用有限元软件Abaqus对海上风机吸力式桶形基础在饱和黏土地基中的竖向承载特性进行三维有限元分析。考虑桶土接触面分离条件对极限承载力和土体破坏模式的影响,并且对桶形基础长径比、土体的有效重度以及土体不排水抗剪强度分布对桶形基础竖向极限承载特性的影响进行分析。研究成果可以为海上风机吸力式桶形基础设计提供参考。  相似文献   

3.
The cost of foundations for offshore wind turbines constitutes approximately 35% of the total cost of an offshore wind farm. The bucket foundations show significant potential due to their superior transportation and installation efficiencies compared to pile foundations, leading to potential cost savings for the foundation of up to 30%. For a bucket foundation to be installed successfully, the penetration resistance must be predicted. However, there is currently a lack of clarity on how to select a suitable calculation method for penetration resistance based on known geological parameters to guide construction. In order to evaluate the current methods of calculation for bucket foundation penetration resistance, this study combines theoretical calculation methods with two sets of practical measurement data from the field. The calculation methods of penetration resistance for bucket foundation are first reviewed and categorized. The applicability range of each method and the parameters needed for calculation are given. Next, according to the measured data in the process of penetration of bucket foundation on site, the evolution of compartment pressure, tilt angle, resistance and required suction in the process of penetration are analyzed. Finally, the reviewed methods are compared to the results of two practical projects in order to analyze the differences between them and make recommendations for the calculation technique. The findings can be used as a guide for calculating the bucket foundation's penetration resistance in complex geological conditions.  相似文献   

4.
To optimize offshore wind turbine (OWT) design, an engineering tool has been developed allowing for a detailed investigation of the effects of nonlinear soil stiffness and damping on foundation dynamics. We have studied the response of a vertically oscillating offshore wind monopile foundation in a realistic soil profile subjected to loads between 1 and 200 MN in the frequency range 0–10 Hz with pseudo-static and equivalent linear dynamic model. The non-linear soil behaviour is modelled with an equivalent linear method with shear modulus reduction and damping curves as input. The tool is verified and validated by comparison with elasto-dynamic model and experiments. With increasing load amplitudes foundation stiffness increases and damping decreases. For large load amplitudes the lower part of the pile foundation contributes more to foundation damping. The results indicate the nonlinear foundation stiffness and damping can be modelled rationally by combining stiffness and hysteretic damping from nonlinear static tools with apparent mass and radiation damping from elasto-dynamic analysis. The tool can be used to compute soil springs and dampers based on laboratory-based soil stiffness and damping.  相似文献   

5.
New offshore oil and gas exploration has placed renewed emphasis on developing structures in relatively complex geological conditions. Due to the damaging nature of impact driving, traditional steel piles used to support jacket structures, are not ideally suited to specific soil types, such as carbonate sands. Drilled and grouted piles are commonly used to support structures in these soil conditions. This paper describes a novel drilled pile, which has been developed specifically to provide a cost effective installation process while maintaining the benefits of grouted piles. The installation process negates the need for temporary casing in weak soils and minimizes the number of offshore operations. In this paper, the installation methodology and post-installation performance of a large scale onshore field trial is described. The installation process was successfully demonstrated with a 1.9 m diameter test pile installed in fine sand to 17.7 m depth in under 3 h. The performance of the pile, as measured in a tension static load test, was shown to compare favorably with existing pile design methods.  相似文献   

6.
结合现场筒形基础安装全过程,有针对性地记录安装失败的关键环节,利用筒形基础设计及理论知识对贯入力、负压贯入过程和土塞效应影响进行全面地剖析,带有建设性意见地提出了导致筒形基础安装失败的原因,对日后该形式海工结构物海上安装具有一定的工程借鉴意义。  相似文献   

7.
初新杰 《水运工程》2011,(8):130-132
自施工桶形基础平台在海上受风、浪、流、冰等载荷作用,平台应有足够的着底稳性,以保证平台的作业安全。根据研究对象和环境参数,确定了工作水深17 m 的典型自施工式桶基平台主体结构形式,阐述了平台的抗滑稳性、垂向稳性和抗倾稳性计算方法,计算结果表明平台具有良好的着底稳性,平台在着底状态是安全的。  相似文献   

8.
9.
Considering the deficiencies of the traditional monopile foundation for offshore wind turbines (OWTs) in severe marine environments, an innovative hybrid foundation is developed in the present study. The hybrid foundation consists of a traditional monopile and a wide–shallow bucket. A series of numerical analyses are conducted to investigate its behavior under the static and dynamic loading, considering various loading eccentricities. A traditional monopile with the same steel volume is used as a benchmark. Although the monopile outperforms the hybrid foundation in terms of the ultimate moment capacity under each loading eccentricity, the latter can achieve superior or the same performance with nearly half of the pile length in the design loading range. Moreover, the horizontal load and moment are mainly resisted by the bucket and the single pile in the hybrid foundation respectively. The failure mechanism of both the hybrid foundation and the monopile is excessive rotation. In the rotation angle of 0.05 rad, the rotation center is located at the depth of approximately 0.6–0.75 times and 0.65–0.75 times the pile length for the hybrid foundation and the monopile respectively. The increasing loading eccentricities can lead to increasing moment bearing capacity, increasing initial stiffness and upward movement of the rotation center of the two foundations, while decreasing load sharing ratio of the single pile in the hybrid foundation. Three scenarios are considered in investigating the dynamic loading behavior of the hybrid foundation. Dynamic response results reveal that addition of the bucket to the foundation can restrain the rotation and lateral displacement effectively. The superiority of the hybrid foundation is more obvious under the combined wave and current loading.  相似文献   

10.
海洋平台需通过桩基与海床固定,桩基根据安装工艺不同分为:打桩桩、钻孔桩和吸力桩;随着海洋工程的发展,吸力桩越来越广泛地用作为系泊系统、水下生产系统及自安装式平台的桩基。以旅大32-2系缆平台为例,对吸力桩平台吸水灌入工艺进行介绍,可提供以后类似工程借鉴和参考。  相似文献   

11.
初新杰 《船海工程》2011,40(2):104-107
通过室内试验,讨论了采油平台的冲淘机理和防护措施,针对仿生海底、仿生林、抛石块、抛石子袋等防冲淘措施进行了方案设计和试验,完成了导管架式、桶形基础式、沉垫式三种采油平台的冲淘及防护试验,提出和完善了多层次抛石防护技术,并将研究成果成功地应用于海上防护工程。  相似文献   

12.
海上风机导管架基础钢管桩沉桩施工通常需要专门的稳桩平台辅助进行。结合作业工艺要求、海洋环境条件和相关规范,对钢管桩稳桩平台进行结构设计。采用SESAM软件和ANSYS Workbench软件分别对稳桩平台整体结构强度和吊耳局部结构强度进行计算分析,并根据规范对计算结果进行评估。结果表明,稳桩平台整体结构强度和吊耳局部结构强度均满足规范要求。该计算分析方法同样适用于海上升压站导管架基础、海上单桩基础稳桩平台或其他类似导管架结构的强度评估。  相似文献   

13.
舰船弹性安装设备抗冲击设计的“谱跌”问题研究   总被引:1,自引:0,他引:1  
研究在应用冲击谱进行舰艇设备抗冲击性能设计时,由于基础的弹性引起的冲击谱设计谱值的变化规律.利用二自由度模型简化舰艇设备安装模型,通过对二自由度模型基础冲击谱的分析,得出在设备的自身固有频率处,基础的冲击谱存在峰值的突降.在设备自身固有频率和基础固有频率接近,或设备质量大于0.2倍基础质量时,必须考虑"谱跌"因素的影响.多自由度系统中具有相同的"谱跌"现象和规律.  相似文献   

14.
王梅  李大勇 《港工技术》2011,48(3):51-53
近年来,吸力基础已在各种悬浮结构、海洋平台锚固装置和离岸风电场工程中得到成功应用.重点研究离岸风电场新型裙式吸力基础的水平承载力,分析设置接触面对结构水平位移的影响、裙式基础的尺寸比变化等因素对水平承载力的影响.数值分析结果表明,通过增加裙式基础的高度能有效提高基础的水平承载力.  相似文献   

15.
The composite bucket foundation (CBF) is a new and environmentally-friendly foundation for offshore wind turbines. This foundation can be prefabricated in batches onshore followed by integrated transport and installation at sea. The structure itself has a subdivision air cushion structure that enables the foundation to float stably on the water surface and realize long-distance towing of the foundation. The mechanism of this air-liquid-solid coupling towing process is complicated, and the influence of the bulkheads on the towing resistance is not clear. In this paper, the influence of the subdivision structure on the towing resistance of the CBF is compared with the tow test in hydrostatic water. The structural motion characteristics and the change of the cushion pressure are also analysed. Experiments are used to verify numerical calculation results. The flow field difference between the CBF with bulkheads, the CBF without bulkheads and the real floating structure was analysed. The dynamic pressure coefficient was used to analyze the force at surfaces of different CBF's. For the tow test and numerical calculation of multiple CBFs, the optimal multi-CBF tow distance and towage number are obtained through the calculation of energy consumption rate.  相似文献   

16.
This paper presents a preliminary technical feasibility study on a new methodology proposed for installing a monopile-based bottom supported offshore wind turbine structure. The concept is developed to address the problem of “waiting for a suitable weather window” which is commonly faced by the existing installation methods that uses a typical jack-up platform. In the methodology, a floating vessel along with a floatable subsea structure fitted with a hull on the top, hereafter named SSIP (subsea structure for installing a pile), is proposed first to install a monopile. Then the same structure is used to carry an FIUS (fully integrated upper structure) of an offshore wind turbine, which is characterized by a telescopic tower, and install it over the monopile by using an FOP (float-over-pulling) arrangement. Here, the installation methodologies are first briefly described along with the critical load cases associated with them. These load cases are then numerically studied for a significant wave height (HS) of 2.5 m, and the results are summarized. For installing a fully integrated offshore wind turbine upper structure on a monopile foundation by the FOP method, two installation schemes are presented, and their dynamic characteristics are compared. It is shown that the proposed methodologies have potential to provide installation solutions which can be environmentally more robust compared to the existing method for installing an offshore wind turbine.  相似文献   

17.
详细介绍了黄骅港扩容完善工程6 000 t/h斗轮悬臂取料机的安装调试技术。根据现场条件和设备到货的实际情况,确定安装工艺流程,计算吊装性能参数,合理选择吊装起重机和索具,制定合理有效的质量控制措施,保证了安装调试的质量和安全,提高了施工效率,达到了预期的施工效果。  相似文献   

18.
王丽勤  庞然 《船海工程》2011,40(2):98-103,107
基于吸力式基础在全球深水油气田开发设施中的工程应用调研结果,对比分析此类基础较其他基础型式的优势,介绍吸力式基础的设计和施工过程应该着重考虑的问题,展望其在国内的应用前景。  相似文献   

19.
The dynamic characteristics of offshore wind turbines are heavily affected by environmental loads from wave and wind action and nonlinear soil behaviour. In the design of the monopile structures, the fatigue load due to wind and wave loading is one of the most important problems to consider. Since the fatigue damage is sensitive to the foundation stiffness and damping, increasing the accuracy of analysis tools used in the design and optimization process can improve the reliability of the structure and reduce conservatism, thereby leading to a more cost-efficient design. In this context, analysis of field data is important for calibrating and verifying purposes. This paper presents analysis of measured accelerations and strains from a wind farm in the North Sea with monopile foundations. Field data during idling conditions, collected over long periods of operation, are analysed and the natural frequencies are determined, and damping is estimated. The measured natural frequencies are compared to calculated values using an aero-servo-hydro-elastic code, showing a good agreement in the frequency range below 2 Hz. Variation of the natural frequencies with intensity of loading may indicate effect of soil nonlinearity on the overall OWT response. Since the first natural bending modes have the largest potential to mobilize soil reactions, they are of primary interest in this context. The effect of load (wave, wind and dynamic bending moment) on the first natural frequency is investigated using different analysis techniques in the frequency domain and time domain. A clear correlation between load level and first natural frequency is demonstrated. A simple nonlinear SSI model of the tower/soil system is employed to numerically investigate the observed changes in the measured first natural frequency with the level of loading and increased overall damping. The simulated results reproduce the general trends in the observed reduction in the first natural frequency and increased damping ratio with the load level. However, the effect of the load level is less than that observed in the measurements, indicating contribution also from other factors than soil nonlinearity.  相似文献   

20.
With the gradual implementation of offshore wind energy production, the future tendency is to expand into the deeper water. The jacket foundations will take the place of the present monopile foundations when the water depth increases. The foundations account for the majority of the construction cost for offshore wind farms, and the structural optimization of jackets will bring lucrative economic benefits. Structural optimization is a complex iterative process that requires huge computing costs. Therefore, this paper proposes a structural optimization method based on surrogate models to solve this problem effectively and swiftly obtain optimized design schemes of lightweight jackets for offshore wind turbines. The structural responses of jacket wind turbine systems under the equivalent static extreme loads with a recurrence period of 50 years are mainly considered in structural optimization design, and the key optimization variables of jackets are determined by parameter sensitivity analysis. The finite element models of jackets are transformed into surrogate models, and the genetic algorithm is employed to optimize the surrogate models directly. The optimized jackets are additionally verified through coupled dynamic analysis, besides, buckling strength and fatigue life are also checked. And local refined optimizations are carried out for the failure members. According to the optimized design schemes of lightweight jackets for 30 m, 50 m and 70 m water depths, it is demonstrated that the structural optimization design method is adequate and efficient for jackets of wind turbines. Parameter sensitivity analysis can cut the number of optimization variables in half to improve the optimization efficiency. Furthermore, the application of surrogate models can significantly speed up the optimization process by saving about 98.61% of the original time consumed. The optimization design method of the jackets for offshore wind turbines proposed in this paper is suitable for practical engineering, with high precision and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号