首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is the first of two companion papers concerning the ultimate hull girder strength of container ships subjected to combined hogging moment and bottom local loads. In the midship part of container ships, upward bottom local loads are usually larger than the downward ones. This leads to the increase of biaxial compression in the outer bottom plating and the reduction of the ultimate hull girder strength in the hogging condition. In this Part 1, the collapse behavior and ultimate strength of container ships under combined hogging moment and bottom local loads are analyzed using nonlinear finite element method. Buckling collapse behavior of bottom stiffened panels during the progressive collapse of a hull girder is closely investigated. It has been found that major factors of the reduction of ultimate hogging strength due to bottom local loads are (1) the increase of the longitudinal compression in the outer bottom and (2) the reduction of the effectiveness of the inner bottom, which is on the tension side of local bending of the double bottom. The obtained results will be utilized in the Part 2 paper to develop a simplified method of progressive collapse analysis of container ships under combined hogging moment and bottom local loads.  相似文献   

2.
For bulk carriers in hogging, the most critical situation is the alternate hold loading (AHL) condition with odd numbered holds loaded with high density cargoes and even numbered holds empty. The effect of the local lateral pressure loads should be considered in the assessment of ultimate hull girder strength in the hogging and AHL conditions. In the present paper the ultimate strength of a Capesize bulk carrier hull girder under combined global and local loads in the hogging and AHL condition is extensively and systematically investigated using nonlinear finite element (FE) analysis with ABAQUS software. Since the bulk carrier used as a reference vessel in this study is an old design we also studied the effect of modified scantlings by multiplying the plate thickness in the bottom structure by a design modification factor (DMF). In particular, it should be noted that a DMF of 1.4 gives a design in accordance with the new CSR rules. Based on the results obtained by nonlinear FE analyses, a practical interaction equation is established between global hogging bending capacity and average external sea pressure over the bottom.  相似文献   

3.
The alternate hold still-water loading in hogging combined with wave loading is critical for the safe design of bulk carriers. The ultimate longitudinal strength of the hull girder of bulk carriers in this condition has been found to be considerably reduced by the action of local lateral pressure loads. In the present paper, an interaction equation based on the ultimate hull girder strength assessment obtained by nonlinear finite element analyses is adopted to consider the relationship between ultimate longitudinal bending capacity and average external sea pressure over the bottom. This interaction equation is used as the basis for the failure function. The annual probability of failure is obtained by FORM analysis considering two typical load cases, namely, pure longitudinal hogging bending moment and combined global hogging bending moment and local lateral pressure loads. The effect of heavy weather avoidance on the failure probability is evaluated. The results show that the local lateral pressure has a significant influence on the annual probability of failure of bulk carriers in the hogging and alternate hold loading condition.  相似文献   

4.
This is the second of two companion papers dealing with nonlinear finite element modelling and ultimate strength analysis of the hull girder of a bulk carrier under Alternate Hold Loading (AHL) condition. The methodology for nonlinear finite element modelling as well as the ultimate strength results from the nonlinear FE analyses was discussed in the companion paper (Part 1). The purpose of the present paper is to use the FE results to contribute towards developing simplified methods applicable to practical design of ship hulls under combined global and local loads. An important issue is the significant double bottom bending in the empty hold in AHL due to combined global hull girder bending moment and local loads. Therefore, the stress distributions in the double bottom area at different load levels i.e. rule load level and ultimate failure load level are presented in detail. The implication of different design pressures obtained by different rules (CSR-BC rules and DNV rules) on the stress distribution is investigated. Both (partially) heavy cargo AHL and fully loaded cargo AHL are considered. Factors of influence of double bottom bending such as initial imperfections, local loads, stress distribution and failure modes on the hull girder strength are discussed. Simplified procedures for determination of the hull girder strength for bulk carriers under AHL conditions are also discussed in light of the FE analyses.  相似文献   

5.
散货船在装载矿石等重货时,通常只装载在奇数货舱内,这就是所谓的隔舱重载工况。在这种工况下,中间舱的双层底结构除受到总纵弯曲作用外,还会受到邻舱重货引起的局部弯曲作用,而且该局部弯曲的作用会降低中拱状态下船体梁的极限强度。文章提出了一种简易计算方法,顶边舱结构和底边舱结构可以看作两根梁,双层底结构可视作正交异性板,运用双梁理论和正交异性板理论可推导出局部弯曲的影响。然后,考虑该局部弯曲的作用,用Smith法计算船体梁的极限强度。最后,将文中方法计算的结果与FEM结果进行比较,并对结果进行了分析。  相似文献   

6.
采用非线性有限元法对中拱和中垂工况条件下碳纤维增强聚合物(Carbon Fiber Reinforced Polymer, CFRP)修复的浮式生产储卸油装置(Floating Production Storage and Offloading, FPSO)点蚀船体梁极限强度进行仿真分析。对比FPSO的完整船体梁、点蚀船体梁和CFRP修复的点蚀船体梁的中拱极限弯矩和中垂极限弯矩,分析CFRP对FPSO点蚀船体梁的修复效果,并分析胶层失效规律。结果表明,CFRP可为船舶的高效修复提供一种新的方式。  相似文献   

7.
随着世界货运量的需求增加,集装箱船的大型化发展从未停止。近十年内,有2艘大型集装箱船先后在海上遭到极端载荷而丧失结构承载能力以致发生灾难性毁坏,给航运界敲响了警钟。为了避免今后大型集装箱船再次遭遇上述严重事故,保证营运中使用的安全性和航行时结构的可靠性,国际船级社协会专门针对集装箱船的规范要求进行修改,提高了载荷设计值,并且要求评估典型货舱结构的极限承载能力。本文针对万箱集装箱船典型货舱结构,基于逐步破坏法和有限元法,计算了垂向和水平方向的极限弯矩。结果表明,在初步设计阶段逐步破坏法有着快速高效的优势,但是考虑到载荷变化的多样性和船体结构的复杂性,还是需要应用非线性有限元法进行建模计算,给出最终评估结果。  相似文献   

8.
Structures of ultra large container ships (ULCS) are characterized by large deck openings and low torsional rigidity. It is essential to comprehensively figure out their collapse behaviors under pure torsion with both model experiments and numerical simulations, making an evaluation of their ultimate torsional strength. In this paper, a similar scale model of a 10,000TEU container ship has been designed and manufactured first, in which both geometric similarity and strength similarity are taken into account. Next the collapse behaviors of the test model are detailedly illustrated with both experimentally and numerically obtained results. Then discussions on warping or shear buckling deformations involved in the collapse process of the structure are conducted with extended numerical simulations. Finally, the ultimate torsional strength of the true ship is evaluated according to the similarity theory. Results show that it is the yielding and shear buckling of the side shells that causes the failure of the hull girder under pure torsion. Further nonlinear finite element analysis demonstrates that it may either have warping or shear buckling deformations in the torsional collapse process of the hull girder with a large deck opening, depending on the local rigidity distribution of side shells, which has a significant effect on the ultimate torsional strength of the hull girder.  相似文献   

9.
The continued development of large high speed ships, often constructed from aluminium alloy, has raised important issues regarding the response of lightweight hull girders under primary hull girder bending. In particular, the response of lightly framed panels in compression may be influenced by overall panel buckling over several frame spaces. Therefore, to provide improved ultimate strength prediction for lightweight vessels, an extended progressive collapse methodology is proposed. The method has capabilities to predict the strength of a lightweight aluminium midship section including compartment level buckling modes. Nonlinear finite element analysis is used to validate the extended progressive collapse methodology.  相似文献   

10.
文章基于Smith法,根据国际船级社协会发布的2013版协调共同结构规范(HCSR)中破损模型、失效模式和载荷模型,考虑材料屈服、结构单元屈曲及后屈曲的特性,应用FORTRAN程序设计语言编写船体极限强度计算程序,以某76000吨散货船为算例,对完整船体的极限强度进行计算,对搁浅状态下破损船体的剩余强度进行计算并校核承载能力。通过在中拱和中垂工况下与其他规范的对比验证,2013版HCSR指定的剩余强度校核公式及船体梁载荷计算公式中选取的安全系数要求更高,校核更严格。  相似文献   

11.
循环弯曲载荷下船体梁的极限纵强度   总被引:2,自引:0,他引:2  
根据生破坏的强度准则,详细讨论了循环弯曲载荷下船体梁的非弹性变形性能。给出了循环弯曲载荷下船体梁极限强度的简化分析方法。进行了纵筋加强箱形薄壁梁模型的循环弯曲试验。理论计算与试验结果作了比较,两者吻合较好。  相似文献   

12.
Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the scaled model,sacrificial specimens with circular pillar and trough shapes which respectively show different bending moment-displacement characteristics were mounted to compare the dynamic collapse characteristics of the hull girder in waves.The specimens were designed by using finite element(FE)-analysis.Prior to the tank tests,static four-point-bending tests were conducted to detect the load-carrying capacity of the hull girder.It was shown that the load-carrying capacity of a ship including reduction of the capacity after the ultimate strength can be reproduced experimentally by employing the trough type specimens.Tank tests using these specimens were performed under a focused wave in which the hull girder collapses under once and repetitive focused waves.It was shown from the multiple collapse tests that the increase rate of collapse becomes higher once the load-carrying capacity enters the reduction path while the increase rate is lower before reaching the ultimate strength.  相似文献   

13.
《Marine Structures》2002,15(2):119-138
This paper presents an investigation of the longitudinal strength of ships with damages due to grounding or collision accidents. Analytical equations are derived for the residual hull girder strength and verified with direct calculations of sample commercial ships for a broad spectrum of accidents. Hull girder ultimate strengths of these sample vessels under sagging and hogging conditions are also calculated, based on which correlation equations are proposed. To evaluate a grounded ship, using the section modulus to the deck would be optimistic, while using the section modulus to the bottom would be conservative. On the contrary, to evaluate a collided ship, using the section modulus to the deck would be conservative, while using the section modulus to the bottom would be optimistic. The derived analytical formulae are then applied to a fleet of 67 commercial ships, including 21 double hull tankers, 18 bulk carriers, 22 single hull tankers and six container carriers. The mean values, standard deviations and coefficients of variation for the coefficients in these new analytical formulae are obtained. The ship length exhibits little influence on these coefficients because they are close to the mean values although ship length spans from 150 to 400 m. The ship type shows some influence on the residual strength. Uniform equations are proposed for commercial ships which do not depend on a ship's principal dimensions. These formulae provide very handy tools for predicting the residual strength in seconds, without performing step-by-step detailed calculations, an obvious advantage in cases of emergency or salvage operation.  相似文献   

14.
船体梁的总纵强度是反映船舶结构安全可靠的最基本的强度指标。船体结构极限强度评估对于船舶结构初步设计、使用、维护和维修都非常重要,因此船体梁极限强度研究成为近几十年来船舶工程界的热点研究课题之一。到目前为止有两种典型的加筋板和船体梁的极限强度分析方法,它们是直接计算法和逐步破坏分析法。本文基于加筋板单元的平均应力应变曲线和逐步破坏分拆方法,提出了加筋板和船体梁极限强度的简化分析方法,考虑了初始挠度和残余应力对加筋板单元极限强度的影响。数值结果表明,采用本文简化方法得到的结果与有限元计算结果或其它逐步破坏分析结果比较符合。  相似文献   

15.
破损船体极限强度非线性有限元分析   总被引:6,自引:0,他引:6  
本文基于通用有限元系统,结合船体破损机理和初始缺陷处理方法,建立船体极限强度非线性有限元分析的完整框架.利用对水面舰船和双壳油船极限强度模型试验的比较验证,合理解决非线性有限元分析的关键技术,并对完整和破损船体极限强度进行非线性有限元法分析.然后,在模型试验和非线性有限元分析的基础上提出面向设计的适合破损船体和双向弯曲状态的船体极限强度分析的改进解析方法.  相似文献   

16.
UR-S11A对大型集装箱船结构设计的影响研究   总被引:1,自引:1,他引:0  
国际船级社协会针对集装箱船的新标准UR-S11A已于2016年7月1日正式生效,其对大型集装箱船结构设计的具体影响值得研究。以一艘13 500 TEU集装箱船为例,首先分析了UR-S11A相比UR-S11和劳氏船级社(LR)规范在强度校核上的差异,然后通过对总纵屈服强度、屈曲强度和极限强度的研究分析了新标准对船体结构的影响。结果表明,UR-S11A对在0.3~0.4船长处船体梁的总纵弯曲和极限强度的要求更高,部分纵舱壁板与外板的剪切和屈曲强度以及双层底桁材纵骨的屈曲强度受新规范影响较大。  相似文献   

17.
郭际 《船舶工程》2017,39(S1):32-36
针对内河船舶船体梁极限弯曲能力的计算与统计特性问题,将影响船体梁极限弯曲能力的主要因素作为随机变量,分别讨论了材料屈服强度与板厚的概率分布参数选取。采用增量迭代方法与改进Rosenblueth方法,计算得到船体梁极限弯曲能力及其分布参数。研究表明,极限弯曲能力计算时可不考虑板厚变异的影响,内河船舶船体梁极限弯曲能力具有统计上的稳定性。  相似文献   

18.
由于作业方式不同,用于计算FPSO与不限定航线条件下船舶设计载荷的规范计算公式不一样,如何将现有的关于普通海船的规范用于FPSO的设计评估是FPSO研究中的关键问题.基于现有常规钢质海船规范,文章采用环境烈度因子(ESF)对用于计算运营于无限航区船舶设计载荷的规范公式进行修正,将修正后的公式作为FPSO设计载荷的计算公式.利用所得FPSO载荷计算公式计算某30万吨FPSO设计载荷,并采用薄壁梁理论对船体梁强度进行校核.将校核结果与未经ESF修正的船体梁校核结果进行比较,发现未经ESF修正的船体梁校核结果明显偏大.同时,采用薄壁梁理论进行船体梁剪切强度评估,可以避免建立全船有限元模型.  相似文献   

19.
This paper introduces a novel analytical method to predict the buckling collapse behaviour of a ship hull girder subjected to several cycles of extreme load. This follows the general principles of the established simplified progressive collapse method with an extended capability to re-formulate the load-shortening curve of structural components to account for cyclic degradation. The method provides a framework for assessing residual hull girder strength following a complex series of unusually extreme load events where the wave induced bending moment rises close to, or even surpasses, the monotonic ultimate strength. These load events may be sequential, such as might be caused by a series of storm waves, or they may occur as a collection of discrete events occurring over a longer period. The extreme cyclic bending amplifies the distortion and residual stress initially induced by fabrication in the flanges of the girder, which results in a deterioration of the residual ultimate strength. Validation is firstly completed through a comparison with previously published experimental work and secondly via comparison with numerical simulation on four ship-type box girders using the nonlinear finite element method.  相似文献   

20.
考虑工程项目需要混凝土预制件必须在工程船处于坐底状态时滚装上船的要求,将底座基梁所承受的载荷作为底座基梁的设计要素之一。同时,认为船舶处于坐底状态时船体梁的强度问题是工程成败的关键因素。通过有限元方法求解各底座基梁所承受的压力,并将其作为底座基梁的设计前提,同时完成船体梁的强度校核。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号