首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
高墩水平温差对连续刚构桥上无缝线路的影响   总被引:1,自引:1,他引:0  
为研究高墩水平温差对桥上无缝线路的影响,选取某高墩大跨连续刚构桥工程实例,基于梁轨相互作用原理,建立线桥墩一体化有限元模型,分析在水平纵向和横向温差作用下高墩大跨桥上无缝线路受力变形情况。结果表明:高墩纵向温差对连续刚构桥上无缝线路纵向受力影响较大,随着桥墩纵向温差的增大,桥上无缝线路受力逐渐增大;桥墩横向温差影响桥上无缝线路平顺性,当桥墩横向温差超过一定的限值时,连续刚构桥上无缝线路会出现长波不平顺超限;总结以上分析结果,建议在连续刚构桥上无缝线路设计检算中考虑高墩在水平温差作用下对桥上无缝线路的影响。  相似文献   

2.
在高墩大跨桥梁中,由于夏季太阳辐射作用混凝土结构会出现膨胀,桥墩整体升温会导致墩顶竖向位移增加,从而引起桥上无缝线路纵向附加力和钢轨竖向位移。为研究桥墩整体升温对无砟轨道中轨道部件受力和变形的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,分析高墩大跨桥墩升温条件下桥上无砟轨道无缝线路的受力以及平顺性。计算结果表明:桥墩整体升温对钢轨的纵向力、梁轨相对位移、凸台树脂变形和凸台受力的影响均很小,在无缝线路设计和检算时可以不考虑其对钢轨强度的影响,但会引起线路竖向不平顺,且主要是长波不平顺。  相似文献   

3.
温度梯度对高墩桥上无缝线路的影响分析   总被引:3,自引:0,他引:3  
为研究温度对高墩大跨桥上无缝线路的影响,基于梁轨相互作用原理,利用有限元方法,建立线—桥—墩一体化模型,计算高墩大跨桥梁桥墩受到纵向和横向温度梯度荷载时钢轨的纵向力和梁轨相对位移。计算结果表明:桥墩受到纵向温度梯度荷载时钢轨受到的最大压力为523.09 kN,与最大附加伸缩力值584.95 kN接近,纵向温度荷载对桥上无缝线路的影响近似等同于附加伸缩力,在设计桥上无缝线路时必须予以考虑;横向温度梯度荷载对桥梁本身的影响较小,在设计中可以通过安全系数予以控制,在设计中可忽略。分析温度荷载对高墩桥上无缝线路的影响,对于桥梁的安全设计和保证桥上无缝线路的稳定状态均具有一定的指导意义。  相似文献   

4.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

5.
桥墩温差荷载作用下桥上无缝线路钢轨附加力研究   总被引:3,自引:1,他引:2  
根据梁轨相互作用原理,建立了"轨-梁-墩-体化"有限元模型,采用单位荷载法计算了桥墩温差荷载引起的墩顶纵向位移,计算了桥墩温差引起的桥上无缝线路钢轨附加力.桥墩高度对桥墩温差引起的钢轨附加力影响比较敏感,当桥墩较高时,桥墩温差引起的钢轨附加力不能忽略,建议在高墩桥上设计无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力进行荷载组合,检算钢轨强度和无缝线路稳定性.  相似文献   

6.
王伟华 《中国铁路》2023,(4):100-107
为探究多联连续刚构桥与无缝线路相互作用规律,研究梁轨相互作用,建立城际铁路4×40 m连续刚构桥与无缝线路有限元计算模型,分析不同体系刚度、桥墩沉降对钢轨纵向力、扣件垂向力、桥墩附加力的影响。研究结果表明:刚构桥体系刚度增加有利于无缝线路受力,随着体系纵向刚度的增加,无缝线路伸缩力与制动力均降低,制动力所受的影响更大,伸缩力所受影响不明显。温度工况下路桥过渡处桥墩受附加力最不利,其余联桥墩附加力基本相同;断轨工况下断轨所在两联桥墩受力最不利,桥墩附加力向远端逐渐衰减。钢轨与扣件受力随着桥墩沉降量的增加而线性增大,次边墩沉降引起的扣件拉力值更大,在运营过程中应重点关注。研究成果可为多联4×40 m连续刚构桥铺设无缝线路提供理论指导。  相似文献   

7.
高墩大跨桥梁桥墩升温对桥上无缝线路的影响研究   总被引:4,自引:4,他引:0  
高墩大跨桥梁桥墩整体在太阳辐射下升温,会使桥墩顶部产生竖向位移。对桥墩升温产生竖向位移对无缝线路的影响这一问题,使用有限元软件建立线-桥-墩一体化模型,分析高墩升温条件下桥上无缝线路的受力及变形。计算结果表明:桥墩的升温对桥墩受力影响较小,桥墩温度变化引起的线路竖向不平顺主要是长波不平顺。建议高墩大跨桥梁不考虑桥墩整体温度变化对线路受力的影响,但要对桥墩变形引起的竖向不平顺进行检算,以满足规范对桥上无缝线路验收的需要。  相似文献   

8.
高墩大跨桥梁墩身高,柔性大,在温度梯度的作用下桥墩容易产生较大的变形,这种变形传递到梁体,从而进一步作用在轨道结构上,使其产生不平顺,影响行车质量,而列车在线路上高速行驶时对线路平顺性要求较高。针对这一现实情况,文章通过大型有限元软件,以某高墩大跨连续梁桥为例,建立桥墩-梁体-轨道结构模型,分析钢轨在桥墩整体升温和纵横向温度梯度作用下产生的位移,并参照国内现有的评判标准,计算钢轨不平顺值,分析不同的温度荷载对轨道结构平顺性的影响,最终得出如下结论:桥墩整体温升会影响无缝线路的竖向平顺性;桥墩横向温度梯度会对无缝线路轨向平顺性影响较大;纵向温度梯度对线路平顺性影响不大。  相似文献   

9.
为探究活动支座摩阻对大跨连续梁桥上无缝线路梁-轨相互作用的影响,基于梁-轨相互作用及有限元理论,将活动支座摩阻等效为非线性弹簧,建立可考虑活动支座摩阻的连续梁桥上无缝线路空间耦合模型,对考虑活动支座摩阻前、后的钢轨及桥墩结构受力变形展开对比分析。结果表明,活动支座摩阻增强了连续梁与无缝线路的纵向约束,当活动支座摩阻率从0增大至0.06时,温度作用下,连续梁桥上钢轨纵向力及梁轨相对位移峰值分别减小了24.32%和29.89%,连续梁桥固定墩纵向力增加了2.44倍;制动荷载作用下,钢轨制动力、梁轨相对位移及连续梁桥固定墩纵向力分别减小了53.51%、56.94%和41.63%;断轨工况下,部分断轨力通过活动支座摩阻传递给非固定墩,连续梁桥固定墩纵向力减小了60.64%,钢轨断缝值减小了3.3%;活动支座摩阻对大跨连续梁桥上无缝线路及桥墩纵向力影响较大,建议在大跨连续梁桥上无缝线路及桥墩设计中考虑活动支座摩阻的影响。  相似文献   

10.
为研究有轨电车小半径曲线连续钢梁桥上铺设无缝线路,利用有限元法建立轨道-桥梁曲线线型相互作用模型,分别对有缝线路布置、不设钢轨伸缩调节器无缝线路布置、设钢轨伸缩调节器无缝线路布置进行了降温伸缩工况计算。研究结果表明:有缝线路轨缝在大跨度桥梁梁端较难协调桥梁伸缩位移,轨缝存在夏季顶死、冬季拉大的病害;不设钢轨伸缩调节器的无缝线路导致曲线连续梁桥墩承受较大的钢轨温度力径向分力,曲线与直线线型衔接处存在轨向不平顺;设钢轨伸缩调节器的无缝线路通过钢轨伸缩调节器释放了钢轨温度力,桥墩承受的钢轨温度力径向分力较小。考虑到梁轨的纵向和横向耦合作用,采用曲线线型建立计算模型较为符合实际工况。  相似文献   

11.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

12.
静风荷载对高墩大跨桥梁位移影响分析   总被引:1,自引:0,他引:1  
为了研究静风荷载对高墩大跨桥梁纵横向位移的影响,为高墩大跨桥梁上铺设无缝线路、无砟轨道提供理论依据,运用有限元软件ANSYS,建立桥梁—墩台—基础相互作用一体化模型,分析了静风荷载对桥梁纵向位移、横向位移的影响以及不同桥型对静风荷载抵抗能力的影响。结果表明,静风荷载作用下,高墩大跨桥梁会产生较大的纵横向位移;在最大风荷载作用下,横向位移产生的轨向不平顺值未超过高速铁路轨向不平顺管理值,且不会影响无缝线路的稳定性;静风荷载下引起梁体和墩台纵向位移会影响梁轨相互作用;采用刚构桥较连续梁桥有利于控制风荷载对桥梁变形的影响。  相似文献   

13.
高速铁路多联大跨连续梁日益增多,而该情况下桥上无缝线路设计经验较少,探讨桥上无缝线路纵向附加力变化规律,对桥梁墩台及桥上无缝线路设计具有重要意义。建立了钢轨-扣件阻力-梁体-墩台一体化空间非线形有限元梁轨相互作用模型,并利用Ansys分析软件进行求解,计算分析了不同扣件阻力及不同桥跨布置工况下桥上无缝线路纵向附加力,并总结出纵向附加力变化规律,对多联大跨连续梁桥上无缝线路及桥墩设计有直接指导作用。  相似文献   

14.
广珠城际简支梁墩顶纵向水平线刚度限值研究   总被引:1,自引:0,他引:1  
桥上无缝线路设计是跨区间无缝线路设计的重要组成部分,在桥上铺设无缝线路必须进行梁轨相互作用分析,并对桥梁和轨道结构进行检算。桥上无缝线路钢轨、墩台的纵向力及位移的分布很大程度上取决于桥梁墩台纵向水平线刚度。针对广珠城际铁路的活载类型、轨道结构类型等具体情况,根据桥墩纵向水平线刚度的控制条件,对常见跨度的简支梁桥墩纵向水平线刚度的限值进行了分析计算。  相似文献   

15.
针对大兴线跨京开高架桥上双向钢轨伸缩调节器的布设情况,运用梁轨相互作用原理,进行桥上无缝线路纵向力计算,通过对桥墩受力、轨道强度、无缝线路压弯变形、钢轨断缝等进行检算,论证了取消该桥上钢轨伸缩调节器,铺设无缝线路的可行性,以期为我国城市轨道交通跨区间无缝线路的设计提供相关参考。  相似文献   

16.
温度跨度对桥上无缝线路钢轨伸缩附加力影响很大,是设置钢轨伸缩调节器的关键因素之一。基于连续刚构梁桥墩纵向水平刚度以及两侧简支梁支座布置对桥上无缝线路受力变形的影响,采用理论分析和ANSYS有限元软件研究了连续刚构梁桥上无缝线路温度跨度。结论表明刚构墩刚度越大,温度力作用下钢轨伸缩附加力越小,桥梁变形越小,但影响很小;制动力作用下,梁轨快速相对位移和钢轨制动附加力越小,但影响较大。分析时一般可将连续刚构梁桥简化为仅有一个固定支座且位于其几何中点处的连续梁,温度跨度即为该点到相邻一跨(联)桥上固定支座之间的距离,分析计算精度可满足桥上无缝线路设计检算的需要。研究结果对我国大跨度连续刚构桥桥上无缝线路的建设有着重要的指导作用。  相似文献   

17.
大跨连续刚构桥梁体及轨道温度分布试验及其影响研究   总被引:1,自引:1,他引:0  
为了明确大跨连续刚构桥上梁体及轨道温度分布及其对桥上无缝线路力学行为的影响,以1座铁路常用双线特大连续刚构桥为例,针对箱梁及轨道结构的温度分布开展测试研究,分析结果表明:根据实测数据,钢轨温度最高值要高于气温,轨温最低值相对气温也较低。当气温较低时,最低轨温与最低气温虽不完全一致,但两者相差很小,最高轨温与最高气温亦是如此,但当气温较高时,最高轨温要明显高于最高气温;桥梁纵向温度分布差别不大,温差主要表现在竖向和横向上,箱梁温度沿梁高方向自上而下逐渐升高,沿箱梁横向上同样存在差别,但相差均较小;梁体垂向温度梯度对钢轨纵向受力影响较小,但其对线路高低不平顺会有一定影响,且主要是在长波范围内,当温度梯度较大时会出现长波不平顺超限。  相似文献   

18.
针对城市轨道交通中新应用的双线U型梁和传统的双线箱型梁两种不同形式桥梁,用有限元法计算分析桥上无缝线路附加挠曲力及附加挠曲位移的分布,着重研究线路纵向阻力、桥梁跨度和桥墩刚度等参数变化对桥上无缝线路钢轨受力、桥墩受力及桥梁挠度的影响。研究结果表明,线路纵向阻力、桥梁跨度对钢轨挠曲力的影响较大,而桥墩纵向刚度对钢轨挠曲力的影响较小,为城市轨道交通设计提供理论参考依据。  相似文献   

19.
地震作用下大跨桥上无缝线路纵向响应的研究具有重要意义。以一座大跨桥梁为例,研究了一致激励下桥上无缝线路纵向地震响应,并对小阻力扣件铺设、梁体温差及地震波频谱特性对钢轨最大纵向力的影响进行了分析。得出结论:轨道约束对大跨桥梁结构的低阶纵向自振频率有较大的影响;地震作用下梁缝处钢轨最大纵向力比根据现有规范计算的钢轨最大伸缩力大很多,铁路工程相关规范应增加钢轨地震力检算这一指标;大跨桥上铺设小阻力扣件后,地震时钢轨最大纵向力会降低约20%~30%;穿越震区的大跨桥上无缝线路设计应合理考虑梁体温差的影响,并使桥梁结构低阶纵向自振频率有效避开场地处地震波的主频率段,否则地震发生时桥上无缝线路工作状态将会受到较大考验。  相似文献   

20.
中小跨度长联连续梁桥桥上无缝线路纵向力的研究   总被引:4,自引:1,他引:3  
针对固定墩组和拉压连接器两种桥梁结构,分析计算长联连续梁桥无缝线路纵向力。根据桥梁、钢轨的相互作用关系,建立纵向力计算模型,应用该模型,分析比较了桥梁联长、桥墩刚度以及轮轨粘着系数对纵向力的影响。根据附加纵向力的大小以及长钢轨伸缩位移量,提出了长联连续梁的最大联长,在连续梁中间设置钢轨伸缩调节器时,固定墩组桥梁体系连续梁联长应小于500m~600m,拉压连接器桥梁体系连续梁联长应小于1000m~1200m。研究结果表明,桥上无缝线路长钢轨的附加纵向力与桥墩的刚度有关,刚度减小,长钢轨的附加纵向力增加,对桥上无缝线路的强度和稳定性不利,根据长钢轨附加制动力的大小,提出了不同联长的连续梁桥墩刚度的最小限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号