首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
3 RE0F09A CVT构造(1)RE0F09A型CVT的断面图如图5所示。(2)液力变矩器(带锁定装置)。液力变矩器与以往的A/T一样,可以增大发动机的转矩,并把转矩传递给驱动桥。即采用了泵轮、涡轮和导轮3个部件;具有增转矩和耦合两种状态。液力变矩器断面图如图6所示。  相似文献   

2.
自动变速器(三):—液力变矩器的闭锁与滑差控制   总被引:2,自引:1,他引:2  
1 概述液力变矩器(TC)的性能优越,但最大的缺陷是效率低,为了降低装用液力变矩器汽车的油耗,而采用了闭锁(LU),它是指在液力变矩器的泵轮与涡轮之间,安装一个可控制的离合器,当汽车的行驶工况达到设定目标时,控制离合器将泵轮与涡轮锁成一体,液力变矩器随之变为刚性机械传动,其目的是:a. 提高传动效率。闭锁后消除了液力变矩器高速比工况时效率的下降,理论上闭锁工况效率为1,从而使高速比工况效率大大提高(见图1阴线区)。图1 液力变矩器特性与闭锁b. 闭锁后功率利用好,也提高了汽车的动力性。c. 由于效率的提高,液力变矩器…  相似文献   

3.
汽车自动变速器锁止离合器控制策略   总被引:2,自引:0,他引:2  
徐安  乔向明  刘圣田 《汽车工程》2004,26(3):283-286
分析了锁止离合器的典型结构和锁止点的选取,以及采用车速和发动机节气门开度为主要参数,辅之以其他参数,共同确定液力变矩器锁止的控制策略。  相似文献   

4.
王炅  罗邦杰 《汽车工程》1997,19(3):153-159
本文介绍了由DFZFB-323型带锁止离合器导轮可反转型的液力变矩器与动力换机械变速箱组成的GYB-100型新型城市公共汽车液力机械变速器及电子控制的结构特点,通过样车试验表明,城市公共汽车采用电子控制的液力机械变速器后,具有良好的起步,加速性能,易于驾驶,并且有良好的燃油经济性,提高了我国大客车的生产技术水平以及多种性能和可靠性水平,因而它是一种有发展前景的优于传统机械变速器的客车传动装置。  相似文献   

5.
3.变矩器 (1)变矩器的结构液力变矩器由泵轮、涡轮、导轮和壳体组成,其工作示意图如图158所示。泵轮与变矩器壳焊接为一体,由发动机飞轮驱动;涡轮与变速器输入轴通过花键相连,是变矩器的动力输出端,同时也是自动变速器的动力输入端。动力由泵轮传递给涡轮,其传递介质是自动变速器油(ATF)。  相似文献   

6.
D1档升D2档后的D1档动力传递路线如图9所示,用花键与液力变矩器涡轮相连的输入轴前进档/滑行离合器总成依然被液力变矩器的涡轮驱动。位于输入轴前进档/滑行离合器壳总成中的前进档离合器起作用并固定信前进档离合器楔块式自由轮的外圈,位于输入轴/前进档滑行离合器壳总成中的滑行离合器也起作用,  相似文献   

7.
<正>10.机油泵总成机油泵总成如图19、图20和表11所示。作用:提供压力油。11.阀体总成阀体总成如图21、图22和表12所示。作用控制换挡元件的油路切换。三、A6F5变速器结构原理1.A6F5自动变速器执行元件工作原理(1)液力变矩器液力变矩器(如图23所示)包括变矩器壳、涡轮、泵轮、导轮和锁止离合器。液力变矩器通过内部的自动  相似文献   

8.
介绍了液力变矩器锁止离合器的功用及组成,在分析其工作原理的基础上,重点分析了引起锁止离合器不能锁止、锁止力矩不足、不能解除锁止及锁止点异常等故障现象的原因,为汽车维修人员提高维修质量和效率提供理论参考。  相似文献   

9.
1.驻车锁止齿轮2.涡轮3导轮4.泵轮5变速器外壳通风装置6.机油泵7多片式制动器B18.多盘式离合器K19.拉维娜尔赫(Ravigneaux)行星齿轮10.多片式制动器B311多盘式离合器K212a前部单行星齿轮系统12b后部单行星齿轮系统13.多片式制动器BR14.多盘式离合器K315.多片式制动器B216.变矩器锁止离合器17.变矩器外壳18.测量转动速度的脉冲环19.测量转动速度的环形磁铁20.测量转动速度的环形磁铁21.电液控制模块  相似文献   

10.
具有双离合器的液力变矩器的结构设计   总被引:1,自引:0,他引:1  
将液力变矩器与机械式自动变速器合理匹配可组成一种新型自动变速系统,其性能接近自动变速器,但成本降低。为该系统设计了具有双离合器(闭锁离合器,换档离合器)的液力变矩器。阐述了该液力变矩器的结构、工作原理及特点。试验结果表明,所设计液力变矩器可支持新型自动变速系统成为现实。  相似文献   

11.
阐述了综合式液力变矩器循环圆的确定方法,推导了叶栅系统角度与变矩器的有关特性的计算公式,并在此基础上,对泵轮、涡轮及导轮的进出口角度进行了优化计算,以求在保证满足启动变矩比、力矩系数、能容等性能要求的条件下,获得最高的效率。  相似文献   

12.
为了得到高效率的液力变矩器,对工作轮叶片角与变矩器性能之间的关系进行了研究。根据变矩器的能量损失和平衡建立了某工程机械用液力变矩器的数学模型,得到了转速比为0.12和0.28时工作轮叶片出口角度对变矩器效率、泵轮力矩、涡轮力矩和变矩系数的影响规律;通过Imageware建立了变矩器的流道模型,并进行高速比工况的三维流场数值模拟,对泵轮和导轮不同出口角时变矩器的原始特性进行了对比分析。结果表明,导轮出口角的大小对变矩器性能有较大影响,角度过大或者过小都会降低变矩器的效率。  相似文献   

13.
6 自动变速器动力传递 (1)D位1档时动力传递路线 离合器A接合,发动机动力经液力变矩器涡轮和涡轮轴、太阳轮轴,与后太阳轮连接;行星架在1档单向超越离合器逆时针方向的锁止作用下固定不动,后太阳轮带动短行星轮,传给长行星轮齿圈和输出轴。 (2)1位1档时动力传递路线 制动器D接合,行星架由制动器D锁止。利用发动机怠速运转阻力实现发动机制动作用。  相似文献   

14.
案例1奥德赛RB3轿车行驶中发冲故障现象一辆奥德赛RB3轿车,车速在30 km/h~40 km/h时会发冲,车速超过40km/h时发冲消失。故障诊断首先用HDS读取故障发生时的快摄数据流,然后查看相关参数的波形。由图1可知,故障发生时液力变矩器锁止离合器滑移率(ERT)在短时间内出现激烈波动,进而使车速(输出轴转速)也跟着出现激烈波  相似文献   

15.
工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见…  相似文献   

16.
徐安 《上海汽车》2000,(9):18-20
本文对目前在用的汽车自动变速器液力变矩器锁止离合器进行分类,并对3种不同类型的锁止离合器曲型结构及工作原理进行详尽的分析和介绍,同时还给出了锁止型液力变矩器的工作特性曲线。  相似文献   

17.
当换档操纵手柄位于N位时,如图5所示,动力传递路线和P位是一样的,用花键与液力变矩器相连的输入轴前进档单向离合器壳总成被液力变矩器驱动,由于没有任何离合器或楔块式单向离合器起作用,输入轴前进档单向离合器壳总成自由转动,动力传递被中断,只是此时驻车锁止执行器总成不起作用,驻车棘爪弹簧将驻车棘爪从后内齿圈的齿中释放出来,输出轴可以自由旋转,允许车辆移动。  相似文献   

18.
陈凯  吴光强 《汽车工程》2014,(5):532-536
本文中对液力变矩器与发动机的匹配进行研究。首先,建立了发动机转矩特性与液力变矩器原始特性模型,求得两者共同工作的输入输出特性;然后,根据一维束流理论和能量方程,以两者匹配工作的动力性和经济性为目标,以泵轮出口角和导轮进出口角为设计变量,建立了多目标匹配优化模型,使用遗传算法进行优化,得到Pareto最优解集。结果表明:优化后,最大输出转矩和平均输出功率提高,高效转速范围的燃油消耗率降低,验证了所建模型的正确性与可行性。  相似文献   

19.
8 D5档动力传递路线 图17为D5档动力传递路线。前输入轴与滑行离合器壳总成之间通过花键连接,由液力变矩器驱动运转。固定在倒档离合器壳总成内的直接档离合器起作用,发动机转矩被传递至直接档离合器齿毂总成。直接档离合器齿毂总成与输入和反作用支架之间通过花键连接,驱动输入和反作用支架。固定在超速离合器壳内的超速档离合器起作用,固定住超速和倒档离合器毂总成的支架。超速和倒档离合器毂总成与前输入太阳轮之间通过花键连接,并固定住前输入太阳轮的支架。由于前输入太阳轮被固定,输入和反作用支架被直接档离合器齿毂总成驱动,长行星齿轮组围绕前输入太阳轮的支架运转,转速与发动机转速相同,同时驱动后内齿圈运转,使后内齿圈的转速高于液力变矩器的转速,通过传动齿轮组获得超速档的齿轮传动比,即0.75:1。  相似文献   

20.
故障现象一辆奔驰C180K轿车(采用204底盘和722.6自动变速器),当减速滑行至车速为15 km/h~20 km/h时车身发抖。故障诊断连接故障检测仪试车,当减速滑行到出现车身抖动时,自动变速器在2挡,液力变矩器锁止离合器的状态是"滑转",脉冲负载系数超过30%(图1);一直不降回1挡,直  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号