首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 10 毫秒
1.
高速动车组晃车机理试验研究   总被引:1,自引:0,他引:1  
对运营中的高速动车组进行振动在线测试,分析高速动车组车内振动的时频特性,同时对车轮踏面形状进行同步测试,研究车轮等效锥度特征,分析比较晃车车轮和正常车轮等效锥度的差异以及对晃车现象的影响.测试结果表明,车体出现晃动时平稳性指标明显大于2.5,晃动主频为1.5 Hz左右,主要表现为车体侧滚和摇头的耦合振型;轮轨匹配等效锥度偏小以及抗侧滚扭杆、抗蛇行减振器性能衰减是造成车体晃动的主要原因,因此控制轮轨匹配的等效锥度和保证转向架悬挂系统正常对车辆运营具有重要意义.  相似文献   

2.
复兴号CR400BF高速动车组动力转向架的牵引电机采用特有的四点弹性架悬方式, 在电机和构架之间安装有横向液压减振器和横向止挡, 首次采用牵引电机作为动力吸振器来控制转向架蛇行运动稳定性和蛇行频率, 从而避免引起车体弹性模态共振; 考虑悬挂参数和轮轨接触非线性, 建立了复兴号动车组非线性多刚体动力学仿真模型, 通过悬挂模态计算和动力学时域仿真, 分析了关键参数对动车蛇行运动的影响规律; 基于将电机作为动力吸振器的原理, 优化了电机节点横向刚度和横向减振器阻尼; 考虑动车组运营中的轮轨匹配随机因素, 组合400种轮轨随机匹配状态, 仿真分析了动车的动力学性能; 开展动车组长期线路动力学跟踪试验, 研究了动力转向架蛇行运动演变规律。仿真与试验结果表明: 牵引电机弹性架悬下的构架横向加速度频谱图从以蛇行频率为主频的单峰值变化为主频在蛇行频率两侧的双峰值, 说明电机起到了动力吸振器的作用; 将电机作为动力吸振器能够提高动车蛇行运动稳定性, 具有不同等效锥度的典型轮轨匹配下非线性临界速度超过500 km·h-1; 动车蛇行运动最高频率被控制在6 Hz附近, 远离车体中部菱形弹性模态频率8.5 Hz, 避免了转向架蛇行运动激起车体弹性共振; 动车组在轨道随机不平顺激扰下, 构架端部横向加速度小于0.5g, 平稳性指标小于2.5, 轮轴横向力和脱轨系数等运行安全性指标满足要求。   相似文献   

3.
为了研究抗蛇行减振器参数匹配规律以兼顾不同轮轨接触状态下高速列车横向稳定性,针对国内运行典型结构参数的高速列车,建立车辆横向动力学简化模型,分别考虑到高、低锥度两种轮轨接触状态下车辆的横向稳定性,采用多目标优化方法对抗蛇行减振器刚度和阻尼值进行多参数优化,并分析最优抗蛇行减振器参数的影响因素. 结果表明:优化的抗蛇行减振器阻尼值主要取决于车辆二系横向阻尼,得出了两类阻尼值的抗蛇行减振器选配类型,即当二系横向阻尼较小时,转向架单侧需匹配较小阻尼值600~1000 kN?s?m?1,或当二系横向阻尼较大时,匹配大于4 000 kN?s?m?1的抗蛇行减振器;抗蛇行减振器刚度显著影响不同轮轨接触状态下的车辆稳定性,减小抗蛇行减振器刚度有利于低锥度状态车辆稳定性,反之亦然.   相似文献   

4.
为了分析轮对蛇行运动的形成机理与能量传递机制, 基于车辆系统动力学理论推导了轮对蛇行运动的能量表达式; 借助轮对运动参数的相位关系和能量表达式, 确定了轮对蛇行运动过程中各部分所做的功及其对应的能量传递路线; 通过数值仿真计算不同参数条件下的输入能量, 对比了踏面等效锥度、轮对质量、一系悬挂刚度与重力刚度等参数对轮对稳定性的影响规律。研究结果表明: 蠕滑力和锥形踏面的协同作用是轮对产生蛇行运动的根本原因, 蠕滑力中的刚度项通过调节纵、横向蠕滑率向轮对系统横向运动输入能量, 蠕滑力中的阻尼项耗散轮对系统的能量; 当输入能量大于耗散能量时, 轮对蛇行运动发散, 当输入能量小于耗散能量时, 蛇行运动收敛, 当输入能量等于耗散能量时, 轮对做等幅周期运动; 增大轮对质量和车轮踏面等效锥度不利于轮对的稳定性, 增大一系悬挂纵、横向刚度对轮对稳定性有利; 踏面等效锥度对轮对稳定性的影响最大, 当锥度由0.15增大到0.20时, 输入能量增大了约9.5倍; 一系悬挂刚度的影响次之, 刚度由75kN·m-1增大到100kN·m-1时, 输入能量减小了约60%;轮对质量影响最小, 轮对质量由1 000kg增大到2 100kg时, 输入能量增长了约1.1倍; 在锥形踏面下, 重力刚度对轮对稳定性的影响可以忽略。   相似文献   

5.
高速列车横向半主动悬挂系统模糊控制   总被引:3,自引:0,他引:3  
为了抑制由高速车体摇头引起的车体横向振动,构造了高速列车横向半主动悬挂系统模糊控制结构,采用模糊控制策略,以减振器的实际阻尼力和车体、构架的横向振动加速度为反馈输入,对车体前后横向悬挂系统的可调减振器进行双闭环反馈独立控制.以美国六级轨道谱为输入,在列车运行速度为270 km·h-1时,结合表征列车悬挂系统横向振动特征的17自由度动力学模型,对半主动悬挂机车和被动悬挂机车的横向振动、摇头振动进行计算.计算结果表明:采用半主动悬挂的高速车体平稳性改善了12.54%,摇头振动幅值减少了35.00%,横向振动幅值减少了48.45%,在车体固有频率(1~6 Hz)附近,车体横向振动、摇头振动抑制达到50%.可见,该控制结构和控制策略能够明显抑制车体横向振动.  相似文献   

6.
为合理优化匹配悬挂参数以提升高速机车动力学性能,针对某高速机车,采用虚拟激励法计算频域横向平稳性指标,提出了考虑频域横向平稳性和稳定性多目标性能的关键悬挂参数多参数协同优化方法;分别以2种抗蛇行减振器布置方式和3种轮轨接触状态运行工况为例,验证了该方法对机车横向动力学性能的提升效果. 结果表明:低轮轨接触锥度工况机车一次蛇行稳定性较差,尤其采用抗蛇行减振器斜对称布置方式,机车后司机室横向平稳性显著变差;对于低锥度工况,需以提高机车稳定性为优化目标,而高锥度工况则更需关注其横向平稳性;为兼顾不同轮轨接触条件下机车动力学性能,以提高线路适应性,机车一系纵向刚度、抗蛇行减振器阻尼和二系横向减振器阻尼值在文中给定的优化范围内应尽量选取较小值,建议分别选取12 kN/mm、600 kN·s/m和25 kN·s/m.   相似文献   

7.
为了考虑车体的弹性振动,将车体等效成欧拉伯努利梁,建立了车体与设备垂向耦合振动模型,研究了车下设备刚性悬挂与弹性悬挂对车体振动幅频特性的影响。基于模态叠加法原理建立了考虑车体弹性振动和车下设备的高速动车组三维刚柔耦合动力学模型,分析了车下设备悬挂方式、重心偏载与弹性悬挂参数对车体振动响应的影响规律。采用欧拉伯努利梁模型的数值分析结果表明:基于动力吸振器原理,当车下设备采用合理的弹性悬挂参数时能够有效抑制车体的弹性振动,并提高车体的垂向弯曲频率。采用三维刚柔耦合动力学模型仿真结果表明:车辆运行速度越高弹性悬挂的优点越明显,车下设备横向偏载主要影响车体的横向振动特性,纵向偏载主要影响车体的垂向振动特性;当车下设备的悬挂频率接近车体的垂向弯曲频率时能够降低车体的整体振动水平,当车下设备的悬挂频率低于车体的垂向弯曲频率时,提高车下设备弹性悬挂系统的阻尼能够在一定程度上抑制车体的弹性振动。  相似文献   

8.
为了减小高速动车组车体刚性与弹性振动, 提出了一种基于二系垂向作动器与车体压电作动器的高速动车组车体振动主动控制方法; 基于某型高速动车组, 设计了一种在车辆二系安装垂向作动器, 在车体底架布置压电作动器, 运用H鲁棒最优控制器进行车辆协调控制的主动减振方法; 建立了基于车辆动力学参数的刚柔耦合减振力学模型, 采用H2及H准则优化压电作动器与压电传感器布置位置, 运用鲁棒最优控制方法设计了H反馈控制器; 利用MATLAB仿真了减振装置与主动控制方法对车辆动力学性能的影响, 比较了被动悬挂车辆、仅安装二系垂向作动器车辆与采用主动控制车辆的动力学性能差异。研究结果表明: 压电作动器与压电传感器布置在距车体左端距离为7.15、12.25、17.35m处车体一阶及二阶弹性模态归一化H2及H范数最大, 可以作为压电作动器与传感器的布置位置; 基于二系垂向作动器与车体压电作动器的鲁棒最优控制方法能够有效地抑制车体的振动, 一阶垂弯振动频率处车体中部和转向架上方的加速度功率谱分别减小为被动悬挂车辆的5%、10%;速度越大, 振动加速度抑制效果越明显, 当车辆的运行速度为200km·h-1时, 车体振动加速度均方根减小10%, 当车辆的运行速度为350km·h-1时, 车体振动加速度均方根减小18%;相对于被动悬挂, 二系垂向作动器输出力功率谱在车体浮沉与点头振动频率处的量级为106 N2·Hz-1, 对车体刚性振动有较大抑制作用, 压电作动器电压功率谱在车体一阶垂弯振动频率处达到峰值4 000V2·Hz-1, 对车体弹性振动有较大抑制作用。   相似文献   

9.
与快铁运用模式不同,高铁运用模式更加强调安全冗余.因而降低蛇行振荡参振质量应当作为高速转向架设计的基本原则.横向振动耦合机制是高铁车辆振动行为的基本规律,其形成具有以下2个主要因素:即轮对(强)迫导向定位形式和抗蛇行高频阻抗作用,两者导致车体摇头大阻尼特征,造成车体对后位转向架接口的横向高频扰动增强,进而构成了横向振动传递媒介.同时这2个因素也是参振质量降低的必要技术条件.降低纵向定位刚度或最小等效锥度,将违背高速转向架的降低参振质量基本原则.因而在350 km/h标准动车组及其技改中,必须实施抗蛇行宽频带吸能机制原始技术创新.  相似文献   

10.
高速客车转向架悬挂参数分析   总被引:4,自引:0,他引:4  
为了全面考察转向架悬挂参数对高速客车行车安全性和乘坐舒适性的影响规律,为高速客车转向架悬挂参数的合理选取提供理论依据,首先从时域内分析了一、二系悬挂参数对高速客车动力学性能的影响,然后从频域内分析了二系悬挂参数对车体振动模态的影响.仿真计算与分析结果表明:合理设置一系纵向和横向定位刚度和二系抗蛇行减振器结构阻尼参数即可基本实现转向架较高的临界速度;减小二系横向刚度而适当增大二系横向阻尼可提高高速客车的横向平稳性;为了改善高速客车的垂向平稳性,一、二系垂向减振器阻尼都不宜选取过大.  相似文献   

11.
基于车辆系统动力学理论建立包括柔性齿轮箱体与柔性轮对在内的刚柔耦合动力学模型,应用直接转矩控制理论建立了牵引电机控制模型,利用Simpack与Simulink联合仿真平台建立了机电耦合模型;考虑轮轨激励、车辆结构振动与谐波转矩等因素耦合作用,通过机电联合仿真对牵引传动部件振动特性进行了频谱分析,对牵引电机悬挂节点径向刚度、轴向刚度及阻尼在不同量级区间内的取值进行了研究。分析结果表明:在牵引电机谐波转矩和车轮多边形作用下,高速列车牵引传动部件出现较为明显的高频振动,牵引电机悬挂节点径向刚度为20~30 MN·m-1时,牵引电机垂向振动达到极小值,齿轮箱体与牵引电机在6倍基波频率及车轮转频处振动加速度较小,且径向刚度较小时车辆安全性指标较优;牵引电机悬挂节点轴向刚度为4~6 MN·m-1时,齿轮箱体与牵引电机受电机谐波转矩及车轮多边形高频激励的影响较小;牵引电机悬挂节点阻尼为0.1~40.0 kN·s·m-1时,转向架部件振动有效值较小,阻尼的变化对车辆动力学指标的影响甚微,且车辆安全性及平稳性指标较优。  相似文献   

12.
为分析高速动车组在不同运行速度下的转向架蛇行运动频谱,推导了自由轮对蛇行运动模型,建立了与纵向、横向速度和摇头角速度相关的3个一阶微分方程;建立了柔性转向架蛇行运动模型,给出了与轮对和构架的横移和摇头自由度相关的9自由度蛇行运动方程;结合车辆悬挂和实测轮轨接触关系等参数,联立自由轮对蛇行运动方程,求解不同轮对初始横移下...  相似文献   

13.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

14.
磁浮列车单铁悬浮车桥耦合振动分析   总被引:1,自引:1,他引:0  
为研究单铁悬浮车桥耦合振动,将悬浮控制系统、车辆结构、弹性轨道梁及桥梁安装系统作为整体系统,建立整体系统的磁浮列车的悬浮控制-弹性桥梁-机械结构垂向耦合振动模型,以不同频率的外力激扰模拟磁浮列车不同的速度下对桥梁的作用,分析了不同梁型在整体系统耦合条件下的跨中挠度与振动加速度的变化。研究结果表明:单铁悬浮稳定后,简支梁跨中挠度约为两跨连续梁悬浮处挠度的2.5倍;以200km.h-1车速通过桥梁时其挠度略小于400km.h-1车速通过工况,但前者再次达到稳定状态所需时间约为后者的1/3;车辆以相同速度通过桥梁时,连续梁悬浮处跨中挠度约为简支梁的40%,且前者振动加速度小于后者;仿真过程中桥梁安装临界刚度范围为(5.5~6.5)×107 N.m-1;两跨连续梁动力学性能较简支梁更为优秀。  相似文献   

15.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。   相似文献   

16.
针对我国铁路货车提速过程中出现的铁路上承钢板梁横向振幅严重超限现象,以轮对随机人工蛇行波为激励,就不同的蛇行波长对铁路钢板梁桥横向振动的影响进行了探讨。结果表明,在同一速度下,桥梁发生的横向振动位移与轮对的蛇行波波长有关,当轮对的蛇形波波长在7~10m范围内并且激振频率(即行车速度与蛇行波长的比值)与桥梁横向有载自振频率接近时.桥梁横向位移达到最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号