首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
为探索城市干线短交织区交通运行特性,基于高精度车辆轨迹数据,提出细化元胞尺寸与步长的交织区元胞自动机多级换道决策模型.划分上下游、交织影响区等多个分区,独立设置变量与规则进行建模;考虑车辆换道速度差、间距及换道安全风险,建立上下游换道模型,交织影响区多级换道决策模型;对未分区换道模型(I),分区STCA换道模型(II),分区多路合流换道模型(III),本文模型(IV)进行仿真验证.与实测数据相比,本文模型平均车道流量误差仅为 1.64%. 模型 I~IV 在交织影响区的平均速度误差分别为 98.35%、23.77%、16.46%、7.45%,换道次数误差分别为33.34%、97.75%、62.97%、11.85%.结果表明,本文模型能有效模拟短交织区复杂的换道行为及交通流特性.  相似文献   

2.
面向车辆换道风险预测时特征差异大、样本不均衡、参数调优时间久的问题,将高精度微观车辆轨迹数据与超参数优化机器学习方法相结合,提出了一种可应用于智能网联车辆(ICV)的交织区换道风险识别与预警方法;基于无人机航拍视频,从广域视角提取了城市快速路交织区时间精度为0.1 s、空间精度为每像素0.1 m的换道轨迹,测算了车辆间距、矢量速度、加速度、接近率、速度角度等换道风险感知信息;引入考虑近邻车辆信息的换道TTC模型,以反映车辆汇入或汇出主线的迫切需求,描述其在不同位置的换道行为差异性;结合15分位数法和四分位差法,划分了换道风险预警等级;基于准确率、真阳性率、灵敏度等多项评价指标,遴选并对比了线性分类器、支持向量机、K近邻以及RUSBoost模型换道风险预测结果,得出交织区换道风险实时预警优选模型,针对优选模型进行了超参数优化与验证。研究结果表明:RUSBoost模型为优选模型;超参数优化机器学习方法迭代至第24次时,RUSBoost具有最小误差与最佳点超参数;RUSBoost、BRUSBoost优化模型预测准确率分别为91.40%、99.80%,AUC分别为0.96、0.99;BRUSB...  相似文献   

3.
为了识别入口匝道汇入车辆与主线直行车辆间的交通冲突,开展了匝道合流区车辆交通冲突识别研究.本文结合车辆运动信息,考虑车辆尺寸对交通冲突的影响,构建了基于后侵入时间(Post Encroachment Time, PET)算法的匝道合流区冲突识别模型;给出车辆交通冲突严重程度的确定方法,采用仿真分析验证了所建模型的有效性.结合实测交通数据,确定了PET阈值范围.结果表明,采用后侵入时间算法的匝道合流区交通冲突识别准确率为91.71%,说明该模型能有效识别匝道合流区的潜在冲突.研究成果可为车路协同环境下匝道合流车辆提供安全预警,进而减少车辆碰撞事故的发生,提升整个交织区域的道路交通安全水平.  相似文献   

4.
为研究高速公路交织区匝道车辆的汇合行为,基于梯度提升决策树(Gradient Boosting Decision Tree, GBDT)构建了交织区汇合加速度模型,利用美国 Next Generation Simulation (NGSIM)车辆轨迹数据提取汇合车辆与周围车辆之间的横纵向距离差、速度差及加速度等交通 参数作为候选变量,将1 s后的汇合加速度作为预测变量,对模型进行五重交叉训练和测试,获取 模型最佳参数组合,引入横向距离碰撞时间 TC 分析汇合过程中侧向碰撞风险对汇合加速度的影 响。研究发现:与基于视角的刺激-反应模型(VASR)相比,本文模型的预测精度更高;引入变量 TC 在均方误差(MSE)、平均绝对偏差(MAD)和R2这3个指标上均优于原模型;在各影响变量之中,汇 合车辆与目标车道领车的速度差 ΔVPL 和横向距离碰撞时间 TC 对汇合加速度的影响最大,相对影 响程度分别达到20.2%和12.1%。研究发现,GBDT模型能够准确预测车辆汇合加速度,深入挖掘 变量和汇合加速度之间的非线性关系,引入变量 TC 能够有效提高模型精度。  相似文献   

5.
为利用智能车路协同系统内实时交互信息有效提升交通系统的安全性,提出了基于交通业务特征的交通信息可信甄别方法;重点构建了基于支持向量机(SVM)-长短时记忆(LSTM)神经网络的车辆跟驰行为识别与信息可信甄别模型,包括基于SVM的车辆跟驰行为识别模型和基于LSTM神经网络的车辆跟驰速度预测模型;设定了表征车辆行驶状态的特征向量,基于SVM的车辆跟驰行为识别模型将车辆行驶状态分为跟驰与非跟驰;对于跟驰车辆,基于LSTM神经网络的车辆跟驰速度预测模型根据其历史数据进行速度预测;SVM-LSTM信息可信甄别模型通过检验跟驰车辆的预测速度与其实际速度的差是否在合理范围来判断车辆数据的可信性,实现信息的可信甄别;采用公开数据集对提出的模型进行了训练与测试,并构建了不同异常类型和异常幅度的多个异常测试数据集,对基于SVM-LSTM神经网络的车辆跟驰行为识别与信息可信甄别模型进行了验证。研究结果表明:基于SVM的车辆跟驰行为识别模型对车辆行驶行为识别的准确率达到了99%,基于LSTM神经网络的车辆跟驰速度预测模型的跟驰速度预测精度达到了cm·s-1数量级;基于SVM-LSTM神经网络的车辆跟驰行为识别与信息可信甄别模型在正常数据测试集与多个异常数据测试集上的甄别正确率达到了97%。由此可见,提出的方法可用于路侧设备(RSUs)对车载单元(OBUs)实时信息和车载单元间实时信息的可信甄别。   相似文献   

6.
为定量识别城市非信控环形交叉口区域内的机动车冲突风险易发生点,降低环形交叉口的事故发生率,本文构建针对非信控环形交叉口机动车冲突风险识别模型。首先,利用无人机采集高精度、连续的多车辆轨迹视频,结合Kinovea视频运动分析软件实现运行车辆状态识别与跟踪,并记录车辆每一帧的运动数据;其次,基于交通冲突识别指标TTC(Time to Collision),提出适应环形交叉口道路线形特征的车辆TTC计算方法,并使用累计频率法确定严重、一般和轻微冲突的阈值分别为1.2,2.8,4.4 s;最后,通过绘制高峰和平峰交通冲突空间异步图,并结合交通冲突数和严重冲突率,对环形交叉口的36个子区段进行交通冲突风险等级评定。研究结果显示:在高峰时段,某一子区段的平均交通冲突发生次数约为15次,严重冲突率为17.45%;在平峰时段,某一子区段的平均交通冲突发生次数约为8次,严重冲突率为8.28%。重度风险区域在高峰时段占比达到50%,而在平峰时段为8.33%,这些重度风险区域主要集中在交织区段。因此,环形交叉口在高峰时段且位于交织区段的情况更易发生交通事故。本文研究成果有助于交通管理部门了解环形交叉口在不同...  相似文献   

7.
交织区是快速路系统的重要组成部分,由于车辆频繁换道、相互作用复杂,容易造成交通瓶颈。本文提取城市多车道交织区时间分辨率为0.1 s、空间分辨率为0.1 m·px-1 的高精度车辆轨迹,分析交织区及相邻路段的交通流和车辆行为特性,提出分区元胞自动机模型。在上游和下游换道模型中,建立基于速度差、车辆间距的换道动机规则、间距规则及Logistic换道概率规则。对于交织影响区,建立考虑速度、间距及路径转换需求的换道动机规则,根据安全风险构建换道时机的多步决策规则,提出基于换道频率Gaussian分布模型的换道概率规则,并对主要参数进行灵敏度仿真测试分析,模型具备评估交织区不同换道状态的实际应用潜力。仿真与实测显示,本文 模型流量、速度、密度及换道分布等特性与实际相符,能有效反映车辆在不同位置的换道需求与强度差异性,刻画多车道交织区复杂的换道行为。  相似文献   

8.
为减少无信控人行横道处多类型冲突及其带来的交通安全问题,本文采用交通冲突指标和回归分析模型研究交通冲突的严重程度和影响因素。提出考虑驾驶员视野障碍影响的冲突指标(TTZ),结合后侵入时间(PET)和安全减速度(DST)冲突指标,量化交通冲突的严重程度;通过计算的冲突指标值,利用模糊C-均值聚类方法识别严重冲突和非严重冲突;将严重冲突和非严重冲突作为因变量,建立基于二元Logit模型的多类型交通冲突严重程度预测模型。结果表明,相较于单次冲突,多重威胁冲突的严重程度更高,其中,多重威胁冲突是严重冲突的占比为57.9%,单次冲突是严重冲突的占比为27.7%。相较于行人,非机动车的严重程度更高,其中,非机动车-机动车冲突是严重冲突的占比为45.7%,行人-机动车冲突是严重冲突的占比为35.4%。关于影响因素,机动车数量、过街等待时间、过街速度及侧面车辆合法屈服行为等因素对多重威胁冲突的严重程度具有显著影响;机动车数量、过街等待时间、过街速度及前方车辆屈服行为等因素对单次冲突的严重程度具有显著影响。  相似文献   

9.
车辆进入交叉口前的速度时间序列可用于预测车辆进入交叉口后若干步数速度值,利用车速预测值推算冲突方向车辆在交叉口内的行驶位移及其车间距离,可评估车辆发生碰撞的风险.针对交叉口附近车速分布符合随机序列特征,采用自回归滑动平均 (ARMA)理论进行车速时序预测建模,步骤包括时序数据相关性检查、模型p-q 定阶、解析式系数估计、适用性检验.试验结果表明:利用实测车速中的前40 个时序数据建立ARMA 模型,预测出的20 个车速值与实测值贴近,冲突方向两车车速归一化平均绝对误差分别为0.006 56 和0.003 4;利用全部60 个实测数据建立预测模型,检测预测值残差自相关函数发现其绝对值均小于0.258 2,表明所建车速预测方法适用.  相似文献   

10.
为了精准掌握高速公路服务区入区车辆特征、提升服务区运营管理水平,基于高速公路ETC门架通行和收费数据,在分析服务区路段和邻近服务区路段车辆行程时间和速度分布特征基础上,考虑路段交通运行状态影响,提出了基于凝聚层次聚类的运行状态识别方法和服务区分车型入区判别模型。以G65包茂高速大观服务区为例,通过关联上、下游门架路段交通运行状态,明确了服务区路段车辆在4种不同运行状态下的速度概率分布特性,结合聚类给出了各个运行状态下车流密度和速度变化的入区判定条件,并利用服务区视频卡口数据进行验证分析。结果表明:判别误差主要分布在拥堵时段,全日客车和货车在考虑运行状态下的相对误差分别为1.5%、7.0%,与不考虑路段运行状态情况相比分别提高了2.9%、4.1%,验证了模型的有效性,为获取高速公路服务区入区车辆特征提供了一种新的思路。  相似文献   

11.
选取长沙市中心区4个典型信号交叉口,利用视频轨迹追踪软件,提取右转机动车与直行非机动车的冲突交通流轨迹数据.以减速、换道等避险行为与可能发生碰撞(距离碰撞点时间小于2 s)为依据,采集机非冲突样本;选择距离碰撞最大时间(MTTC)和冲突时间差(TDTC)作为评价指标,提出一种基于交通流运行轨迹的改进型TTC(Time ...  相似文献   

12.
在分析交通冲突特性的基础上,考虑交叉、合流与分流冲突发生的潜在概率、交通流量及车辆位置等因素,以期望值的观点,建立了各冲突类型的期望冲突量模型;由于不同类型的交通冲突对路口潜在威胁及严重性也不同,在分析各冲突类型易肇事的概率和肇事后严重程度的基础上,给出了3种冲突类型不同的权重值;并在期望冲突量和权重值辆指标的基础上,构建无信号交叉口车流当量期望冲突量,以一无信号交叉口为例,验证其实用性.  相似文献   

13.
为了提高自动驾驶车辆在复杂机非混行交叉口行车安全性、舒适性和效率,提出了一种基于机非冲突近似网格风险评估的自动驾驶左转运动规划模型,并进行模型泛化;设定静态离散序列交叉口网格区域的划分规则,根据多状态通行行为概率转换关系,预测非机动车在细分网格中的运动状态,并动态评估机非冲突区域的风险等级;在此基础上,采用模型预测方法设计自动驾驶车辆的横纵向控制算法,通过自适应调节航向与速度实现跟踪期望轨迹并同步规避网格冲突区域;结合车辆动力学与外部交互环境等约束条件,开发交叉口四相位信号控制交通仿真平台,采用模型在环测试的方式,从效率优度、舒适性优度、实际规划路径与参考路径的偏移量等方面,验证了对左转机非冲突区域运动规划的有效性。研究结果表明:所提出模型能够有效动态提取和预测网格风险信息,确保自动驾驶车辆与驶入交叉口非机动车的安全交互、高效通行与驾驶舒适性,其规划路径的偏移量与同类算法相比最大可降低17.1%,通行效率最大可提高26.6%,舒适性优度最大可提高39.3%,实际路径跟踪表现出高效通过交叉口机非冲突区域和规划路径占用空间低的明显优势。   相似文献   

14.
对信号控制交叉口交通冲突的特征及影响因素进行分析能够快速明确交叉口的安全隐患,并提出合理的改善措施。通过对上海市5个信号控制交叉口进行交通冲突调查,分析信号控制交叉口的冲突类型特征和冲突点空间分布规律,揭示信号控制交叉口交通冲突的致因。结果表明,最突出的机—机冲突类型为直行与对向左转冲突(45%)。另外,超过50%的机—非冲突以及机—人严重冲突与右转机动车相关。利用线性回归模型和负二项模型分析冲突及严重冲突的影响因素,结果显示左转专用相位、右转车比例及大型车比例是显著影响因素。  相似文献   

15.
为更客观、系统地分析无信号交叉口的安全性能,提出“车流冲突线”概念.通过分析首部车冲突概率、碰撞后严重程度比和冲突向后传递长度,构建无信号交叉口安全风险评估模型.研究表明:基于临界冲突距离值构建的首部车冲突概率模型,考虑两车速度、角度、加速度和反应时间,更接近交通冲突的真实过程;借助物理碰撞学原理可确定 3种冲突型态碰撞严重程度的权重关系,即,交叉∶合流∶分流为 12.705∶1.000∶1.000;利用数学期望知识建立的交叉口当量期望车流冲突量模型,综合考虑冲突发生的潜在机率、交通量大小、车辆位置等因素,可更真实描述实际车流冲突行为.  相似文献   

16.
城市道路交叉口车辆微观行驶模型   总被引:4,自引:0,他引:4  
为了更详细有效地分析城市交叉口的交通运行状况,需要建立细致的车辆微观行驶仿真模型,基于对交叉口范围的划分,首先给出了交叉口进口道区域内,信号控制交叉口的绿灯,红灯和黄灯情形,以及无信号交叉口情形下车辆的到达模型,随后,对有冲突交叉口和无冲突交叉口分别给出了相应的车辆驶离模型和穿越空挡模型,最后,详细地分析了交叉口转弯车辆在出口道前沿区域的车道选择行为。  相似文献   

17.
为更客观、系统地分析无信号交叉口的安全性能,提出“车流冲突线”概念.通过分析首部车冲突概率、碰撞后严重程度比和冲突向后传递长度,构建无信号交叉口安全风险评估模型.研究表明:基于临界冲突距离值构建的首部车冲突概率模型,考虑两车速度、角度、加速度和反应时间,更接近交通冲突的真实过程;借助物理碰撞学原理可确定 3种冲突型态碰撞严重程度的权重关系,即,交叉∶合流∶分流为 12.705∶1.000∶1.000;利用数学期望知识建立的交叉口当量期望车流冲突量模型,综合考虑冲突发生的潜在机率、交通量大小、车辆位置等因素,可更真实描述实际车流冲突行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号