首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
为提高城市中心区干线公交车辆行程时间的预测精度,在拟合公交车辆行程时间分布特征的基础上,提出基于多源数据的干线公交行程时间预测模型.对RFID及GPS检测器获取的实际数据进行预处理及分布拟合,其中混合高斯分布函数适用于单路段拟合,对数正态分布适用于多路段的拟合.采用皮尔逊相关性系数对影响行程时间的因素进行相关性分析,其中上游路段前2 个时间窗的平均行程时间的影响最大.分别采用ARIMA、改进的SVM模型对行程时间进行预测,其中改进的SVM模型的平均绝对百分比误差为6.26%,优于ARIMA模型的11.69%,更适用于短距离交叉口间的公交车辆行程时间预测.  相似文献   

2.
为提高城市中心区干线公交车辆行程时间的预测精度,在拟合公交车辆行程时间分布特征的基础上,提出基于多源数据的干线公交行程时间预测模型.对RFID及GPS检测器获取的实际数据进行预处理及分布拟合,其中混合高斯分布函数适用于单路段拟合,对数正态分布适用于多路段的拟合.采用皮尔逊相关性系数对影响行程时间的因素进行相关性分析,其中上游路段前2 个时间窗的平均行程时间的影响最大.分别采用ARIMA、改进的SVM模型对行程时间进行预测,其中改进的SVM模型的平均绝对百分比误差为6.26%,优于ARIMA模型的11.69%,更适用于短距离交叉口间的公交车辆行程时间预测.  相似文献   

3.
城市道路旅行时间是城市交通系统的重要表征参数.基于利用车牌识别系统所检测到的高样本率的车牌数据进行匹配获得信号控制路段的旅行时间数据,本文应用高斯混合模型研究了城市道路旅行时间分布的估计方法,对比了高斯混合模型与正态分布、对数正态分布、Weibull分布模型的差异,并在此基础上分析了高斯混合模型中密集峰的数量对拟合结果的影响.结果表明,针对本文应用的数据,城市信号控制路段的旅行时间可以用高斯混合模型进行良好的表征,恰当的密集峰值往往是2个或3个,更多的密集峰值数量并无实质性影响.研究结果可以为城市信号控制道路旅行时间可靠性等的进一步分析提供良好的支撑.  相似文献   

4.
实时路段行程时间预测是动态交通分配中路径选择的关键技术之一,采用微观交通仿真手段和指数平滑方法估计路段行程时间,在路段行程时间估计模型中考虑了交叉口排队延误、信号控制延误和交叉口内转向行程时间,提出了基于灰色等维新息GM(1,1)模型的路段行程时间预测方法,根据路段行程时间的历史数据和实时采集数据,滚动预测未来的路段行程时间,通过实例应用证明了模型有很好的预测精度.  相似文献   

5.
为充分描述异质交通流条件下的车队离散规律,为信号配时优化、公交优先控制提供理论基础.考虑异质交通流条件下车辆行程时间分布特点,采用混合高斯分布拟合车辆行程时间分布.基于此,从流量角度推导了异质交通流条件下车队流量离散模型.通过实际调查数据,分析了下游交叉口到达流率分布与上游交叉口离去流率分布之间的关系,并将本文模型与Robertson模型、实际数据进行比较分析.结果表明,本文模型能够更好地描述异质交通流条件下的车队离散规律,与Robertson模型相比,平均预测均方误差减少了27%.  相似文献   

6.
以泰州市万达片区关键交叉口监控视频为数据基础,基于深度学习图像识别算法识别交叉口车辆及车牌号信息,结合时间及路网拓扑结构进行车辆出行链划分及车辆出行起讫点提取研究.确定出行路径长度、行程时间、转向次数、道路等级、交叉口数量、轨迹偏爱程度等变量为决策指标,并考虑高峰、平峰、夜间的时段因素,基于多元Logit回归及灰色关联法分别建立路径选择概率模型.研究验证基于多元Logit回归及灰色关联法模型预测结果的均方误差分别为1.56% 和5.61%,结果表明:多元Logit回归预测模型具有较低的预测误差,而灰色关联法模型具有广泛的适用性.  相似文献   

7.
排队长度是拥挤道路或短距离交叉口交通设计或信号控制重点考虑的交通评价指标之一.针对传统排队长度计算仅考虑单个交叉口交通运行参数的不足,构建了综合考虑上下游交叉口交通运行参数的排队长度计算模型.该模型以交通波理论为基础,综合考虑了上下游交叉口的信号设计、转向流量、路段长度,以及相位差等因素,通过各相位最大排队长度状态点的时空演化计算,得到了交叉口最大排队长度计算方法.经VISSIM和SYNCHRO等交通软件的对比分析表明,模型具有较高的计算精度,可定量分析上下游交叉口各交通要素对排队长度的影响,适用于关联交叉口的交通设计优化或拥挤路段的实时信号控制.  相似文献   

8.
已有针对禁左的研究大多从单交叉口交通设计的角度,考虑禁左后的左转交通流组织问题,如U-turn,连续流交叉口设计等,缺少干线整体层面的、针对干线禁左位置选择的研究.本文分别以干线整体通行能力最大、干线交叉口间通行能力匹配值最优为目标,以干线最佳禁左交叉口位置、周期时长、绿信比为决策变量,综合考虑禁左绕行范围、流量守恒、绿灯时间、饱和度、周期时长等约束条件,建立干线禁左的混合整数线性规划模型,并采用分支定界法进行求解.以济南纬二路6个连续交叉口为例进行实例验证,结果表明,对比实地模型与Synchro模型,本文模型能有效降低干线整体车均延误,提高干线整体通行能力,降低排队长度,并使交通流在干线上的分布更加均衡.  相似文献   

9.
《黑龙江交通科技》2017,(4):183-185
通过深入分析欠饱和状态下的路段中间地点速度,提出Webster与基于流量的动态交通路段行程时间算法,利用Webster模型得出路段直行红灯延误时间,引入流量作为通畅状态下行驶时间和红灯延误时间比重参数,且路段直行通畅状态下行驶时间比重参数与流量负相关,红灯延误时间比重参数与流量正相关,比重参数通过路段直行真实行程时间与模拟行程时间回归分析得出。以2016年浙江省海宁市微波及线圈数据为研究对象,结合交叉口红绿灯配时,首先清洗微波和线圈数据,然后利用Webster与基于流量的动态交通路段行程时间算法,结合回归分析训练集得出的路段行程时间关系式,最后利用测试集,得出路段行程时间与真实路段行程时间显著性水平为0.684,并且与固定参数的路段行程时间相比,显著性水平高出0.143,可见该组合算法具有较好的准确率和实用性。  相似文献   

10.
为量化大型车对城市道路交通运行的影响,提出基于大量车牌识别(License Plate Recognition, LPR)数据研究路段、交叉口左转、交叉口直行这3类车头时距,分析大型车影响的方 法。首先,将LPR数据按采集位置划分,提出差异化数据预处理流程,得到用于考察不同车道条 件下4类过车组合的车头时距集合;然后,以高斯混合模型(Gaussian Mixed Model, GMM)、对数正 态混合模型及高斯/对数正态混合模型这3类共13个子模型分别对上述所有集合建模,以最大期 望算法求解参数;之后,以Kolmogorov-Smirnov检验排除不满足要求的模型,综合赤池信息准则 与最小描述长度准则对剩余模型择优;最后,基于最优模型参数定量评价大型车对不同类型车道 的影响。以某城市区域多个卡口与电子警察设备采集的大量LPR数据验证方法有效性。结果表 明:路段与交叉口、交叉口各功能车道的车头时距不符合同一分布,宜区分建模;3个密度分支的 GMM拟合各类车头时距集合均有最佳表现,其他模型在不同阶段体现出不适应性;各种车道条 件下,大型车对相关过车组合的车头时距均值及标准差均有不同程度的影响,且该影响按照路 段、交叉口左转、交叉口直行的顺序依次递减。拟合结果可供大型车影响评价借鉴。  相似文献   

11.
为了定量评价城市主干路交通功能的实现程度, 建立了城市主干路交通功能可靠度的计算方法; 分析了主干路交通功能的3个主要特征, 即承载较大交通流量, 具有较高运行速度与服务于中长距离出行, 应用可靠度理论, 提出了城市主干路交通功能可靠度的概念; 选取行程速度和直行率之积作为可靠度的计算指标, 构建了基于概率论的交通功能可靠度计算方法; 分析了2个计算指标的阈值范围, 对比了交通功能可靠度与服务水平的区别与联系; 针对郑州市2个主干路单元, 评价了其高峰和非高峰时段的交通功能可靠度。计算结果表明: 行程速度与直行率之积不相关, 且可认为二者相互独立; 主干路与支路交叉口的直行率均大于主干路与次干路交叉口的直行率, 实测的4组数据中直行率分别高出0.271、0.062、0.229和0.034;连接老城区与高新区的科学大道在高峰和非高峰时段的交通功能可靠度分别为0.803和0.702, 交通功能实现程度处于较高水平; 老城区的东风路在高峰时段的交通功能可靠度为0.386, 其交通功能特征和实现程度相对较弱, 远低于科学大道; 科学大道上3个交叉口的服务水平均为一级, 高峰和非高峰时段的路段服务水平分别处于C级、B级, 而高峰时段东风路上3个交叉口的服务水平分别为二级、二级和三级, 路段服务水平处于C级, 科学大道的整体服务水平优于东风路。可见, 交通功能可靠度评价结果与服务水平分析结果的趋势基本一致, 但与服务水平相比, 交通功能可靠度更能体现主干路的功能特征和外界因素对交通运行的随机影响。   相似文献   

12.
针对过饱和信号交叉口车辆高能耗问题,以信号交叉口整个过饱和交通状态持续时间作为研究时段,利用定数理论分析车辆排队长度、停车次数和通行时间,确定车辆在信号交叉口的减速、怠速、加速和匀速行驶时间,进一步依据车辆在不同行驶状态下的能源消耗率,建立了过饱和交叉口所有车辆第1次停车至通过停车线的平均能耗模型.为了验证模型的准确性,以某个两相位过饱和交叉口为例,对不同交通流量下的车辆能耗进行计算,并将计算结果与VISSIM仿真结果对比分析,结果表明,本文模型对过饱和信号交叉口的车辆能耗分析具有一定的合理性.同时,依据此模型分析了信号配时对过饱和交叉口车辆能耗的影响,说明了优化配时参数对于过饱和交叉口车辆节能具有重要意义.  相似文献   

13.
合理的配时和信号协调控制方案是提高道路通行效率和缓解交通拥挤的主要手段之一。结合交通组织优化改善措施,应用Synchro软件对泉州市津淮街的三个毗邻交叉口进行信号配时协调优化,并通过VISSIM仿真结果比较优化前后的干道信号协调控制的运行效果。结果表明:经过交通组织优化改善和信号配时优化后,自西向东方向,案例中3个交叉口的延误分别降低了51.9%、31.8%和65.5%,路段延误降低了27.9%,路段行程时间降低了21.7%。同时,各交叉口的平均排队长度也分别降低了61.6%、19.3%和19.2%,改善效果非常显著。  相似文献   

14.
在出租车轨迹数据挖掘的基础上,本文提出基于网格交通状态的行程时间计算方法。在区域网格化的基础上,利用出租车全球定位系统(Global Positioning System, GPS)数据构建区域网格宏观基本图,并对宏观基本图的流量-密度关系进行拟合;进而使用高斯混合聚类法,将区域交通状态分类为畅通、轻度拥堵和重度拥堵。对不同交通状态网格的行程时间进行挖掘分析,发现3类交通状态下网格行程时间表现出不同的分布特征,畅通、轻度拥堵和重度拥堵的最佳行程时间分布分别为Gamma分布、Weibull分布和对数正态分布;通过不同状态网格行驶时间联合概率密度分布的近似拟合推导出路径网格行程时间概率密度模型。本文提出的方法可以快速计算一 定可靠度条件下的行程时间,对不同线路和时间内的案例分析结果表明,该方法对路径行程时间估计的平均绝对误差在1%~16%,可以为交通诱导与未来导航提供技术方法支撑。  相似文献   

15.
为提高城市干道信控交叉口交通安全水平,提出信控交叉口的感知反应区域、 减速行驶区域、排队区域等上游功能区空间要素长度公式,在此基础上,通过红灯、黄灯 损失、黄灯起始、绿灯等信号时段车流运行规律分析,建立上游功能区长度模型.然后提出 考虑反应视距的下游功能区长度模型,从而确定基于功能区长度的信控交叉口最小间距 公式.最后应用逼近理想解排序法,以某干道相邻信控交叉口为例进行计算及评价.评价 结果表明,与现状相比,满足最小间距的相邻信控交叉口区域交通安全水平较高;当间距 大于最小间距数值时,该区域交通安全水平趋于稳定.通过基于信号配时的功能区长度建 模,提出的最小间距计算方法可优化信控交叉口间距方案,提高交叉口布局的合理性.  相似文献   

16.
步行和自行车等外界因素对机动车流的影响也具有随机性,但是这种影响更多地表现为可预见性和可控制性(尤其从交通管理的角度来看),可以说这种影响将导致可预见性的路段实际通过能力降级,并且可预见性特征使得这种影响不同于随机用户平衡中路段旅行时间的感知误差.笔者通过区分路段通过能力降级因素为内因(路段上车流量增加导致道路服务水平降级)和外因(由与路段上与车流量无关的外部因素,如随意过街人流、自行车流等外部因素,引起的道路通过能力降级),并且区分路段旅行时间为通行能力降级路段上行程时间和排解交通拥堵花费的滞留时间两个构成部分的基础上,建立了考虑自行车步行影响的交通平衡综合分析模型;通过对路段参数敏感性分析和实例对照,既展示了该综合分析模型-路径期望旅行时间平衡分析模型与确定性网络用户平衡分析模型的差异性,又展示了路径期望旅行时间平衡分析模型能较好地再现人们对道路路段通行能力降级情形下的车流路径选择行为.  相似文献   

17.
车联网环境下信号交叉口车速控制策略   总被引:1,自引:0,他引:1  
为了减轻城市道路上信号交叉口对交通流的阻断,针对车联网环境下个体车辆可 以与路侧设施及交叉口中心控制系统实时信息交互的特征,提出了信号交叉口车速控制策 略,在提高交叉口通行效率的基础上兼顾驾驶舒适性与环境友好性.为验证车速控制模型的有 效性,基于多智能体技术建立了车联网环境下信号交叉口车速控制仿真系统,以典型十字交 叉口为例,模拟对比分析了传统驾驶和车联网2 种环境下车辆通过交叉口的行程时间、燃料消 耗与污染物排放.结果表明,该速度控制策略下车辆通过交叉口的平均行程时间减少了约 60%,燃料消耗减少了约40%,污染物的排放也有显著减少.  相似文献   

18.
为解决信号交叉口运行效率评价方法偏理论化、实用性不强等问题,以出租车、公交车、驾图 (车联网)多源GPS轨迹数据为基础,充分利用车辆减速、停车、加速等连续速度变化特征及位置信息,提出交叉口个体车辆排队长度、通行时间、停车次数等交通参数提取技术。基于此,构建以信号交叉口运行指数为一级指标,车辆平均通行时间,第95%分位排队长度,两次停车率为第二级指标的评价指标体系,基于高斯混合聚类模型对综合运行指数进行分级量化,最终确定五级服务水平评价标准。实例表明:采用本文方法能够比较准确地反映不同时段交叉口各转向、进口道及交叉口整体运行水平,最大排队长度与实际相对误差约15%左右,优于仿真结果;除样本不足情形以外,服务水平评价结果比仿真更贴近实际运行情况,验证了本文方法的技术可行性及评价结果的客观真实性。  相似文献   

19.
了解路段旅行时间随交通状况变化特性对利用探测车等新式交通检测技术估计交通状态非常重要.基于交通微观仿真模型,分析了路段旅行时间随交通状况的变化特性,验证了平均路段旅行时间是否能够采集通畅、拥挤到堵塞这三个状态,以及是否能细分这三个交通状态.结果表明:(1)平均路段旅行时间能够判断上述三个状态;(2)在拥挤阶段,随着交通状态恶化,平均路段旅行时间逐步增加,因此能够细分拥挤状态为多个子状态,但由于在通畅阶段,即便流量增加,平均路段旅行时间基本不变,因此无法细分通畅状态,细分通畅状态需要流量信息;(3)路段旅行时间在拥挤状态时处于双峰分布,难以用少量的探测车提供的数据可靠地估计平均路段旅行时间.  相似文献   

20.
To estimate arterial link traffic condition based on probe vehicles, it is necessary to investigate the fluctuation characteristics of road travel time with traffic condition. On the basis of micro traffic simulation model, this paper analyzes the fluctuation of road travel time with traffic condition, and examines whether the mean travel time can reflect the variation of traffic conditions including free flow, congestion to traffic jam. As a conclusion, (1) mean link travel time can be used to identify free flow, congestion, and traffic jam; (2) mean link travel time divides congestion condition, but cannot subdivide free flow condition; (3) in the condition of congestion, travel time is distributed as a two-peak mode, and the average travel time is difficult to be estimated by small size sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号