首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为分析基坑开挖对既有盾构隧道的影响,通过数值计算软件模拟盾构隧道施工过程,得到基坑开挖前盾构隧道的应力状态;并以此为基础,进行基坑开挖对盾构管片变形与应力影响的全过程研究。结果表明,双排桩支护方式下,基坑开挖至坑底时,区间隧道距坑底最近的拱肩位置处变形最大,以水平位移为主,最大达6. 77 mm;管片竖向隆起量较小,最大值为1. 31 mm,管片拱肩部位存在一定的应力集中,最大应力达3. 52 MPa;管片拱腰部位X向应力较小,最大值为0. 3 MPa。随基坑内部结构的施工,盾构管片变形逐渐减小。依据变形、应力等控制指标,对最不利条件下管片位移、应力及曲率半径等参数进行安全影响评估,认为该工程条件下,基坑开挖对区间隧道影响较小。  相似文献   

2.
为研究分块开挖基坑对下卧盾构隧道保护的有效性,以深圳市双界河路段某基坑工程为例,建立三维有限元模型,对比下卧盾构隧道竖向位移计算值与实测数据,在此基础上分析不同分块开挖方式对下卧隧道附加弯矩、内径变形的影响,并进一步研究分块开挖与坑底土体加固共同作用下隧道的变形规律。结果表明:在分块数量相同的情况下,横向分块的开挖效果要好于纵向分块开挖,且横向分块数量越多,对隧道竖向位移控制效果越好;隧道最大附加弯矩在拱顶处,隧道整体呈拱顶、拱底处伸长,拱腰处压缩的变形趋势;坑底加固土体可有效控制隧道竖向位移,在隧道变形控制较为严格的工程中,建议在开挖前对坑底土体进行加固。  相似文献   

3.
基坑开挖时会造成地层扰动,进而引发临近盾构隧道发生位移和环间错台,利用剪切错台模型将盾构隧道简化为由剪切弹簧连接的地基梁,以此来描述盾构隧道变形特征,结合最小势能原理,建立盾构隧道的位移方程,求得临近隧道的水平位移值、环间剪力及错台量。研究表明:建模时考虑基坑围护对卸荷传力路径的影响后,计算得到的盾构隧道水平位移值可以较好地反映盾构实际变形;盾构隧道在水平位移最大值处几乎不发生错台变形,该处的管片环之间没有相互错动,也就不会产生剪切力;盾构隧道的错台量与环间剪切力成正比;在水平位移曲线反弯点处的盾构隧道环间错台量与剪力值最大;临近隧道的基坑侧壁卸荷是导致隧道产生水平向位移的主要原因。  相似文献   

4.
庞彪  林萍  丁楚  史江伟 《铁道建筑》2022,(1):117-120
针对基坑开挖对旁侧隧道的影响问题,建立考虑土体小应变刚度特性的三维有限元数值模型,系统研究了软黏土地层基坑-隧道相互作用机理,分析了隧道埋深和隧道与基坑水平间距对隧道三维变形的影响规律。结果表明:新建基坑在运营隧道旁侧施工时,隧道拱顶和基坑侧拱腰的变形最大;当隧道埋深与直径之比从0.5增至2.5时,隧道的最大竖向位移和最大水平位移降幅分别为69%和34%;当隧道与基坑水平间距与直径之比从0.5增至2.5时,隧道的最大竖向位移和最大水平位移降幅分别为46%和21%;基坑施工时应选择合适的避让距离,降低新建基坑施工对运营隧道的不利影响。  相似文献   

5.
针对宁波软土地区在刚建成盾构隧道结构上 方进行基坑开挖的工程实例,采用三维有限元数值模 拟和残余应力法,计算分析基坑开挖施工对已建盾构 隧道结构的影响。分析坑底加固措施对控制基坑隆起 及盾构隧道上浮的作用,同时在上部基坑施工过程中, 对刚建成的隧道进行变形监测,并对监测数据进行分 析,认为坑底加固有利于提高坑底土体的抗隆起稳定 性,可保证基坑的安全。  相似文献   

6.
既有地铁隧道上方基坑开挖特性研究   总被引:2,自引:1,他引:1  
基于长沙轨道1号线隧道上方的某地下空间开发工程案例,通过Plaxis 3D有限元软件对基坑开挖引起下方隧道结构变形以及管片内力进行数值模拟分析,研究每一开挖工况下隧道结构的变形以及管片结构的内力,并据此提出合理的分仓开挖宽度等施工措施。得出在此类基坑中,减小基坑一次性开挖暴露的隧道长度对减小下卧隧道的隆起量至关重要,并详述分仓开挖后基坑以及盾构区间的变形形态。  相似文献   

7.
结合某地铁区间隧道,研究了运营期地铁盾构隧道管片收敛整治过程中的管片变形特征及其影响。阐述了该区间隧道变形的测量方法与结果。对运营地铁盾构隧道管片收敛整治微扰动施工过程中产生的隧道变形进行了实测,并选取下行线测试数据进行分析。结果表明:自注浆开始至注浆结束,由下行线监测区间微扰动注浆施工引起的隧道管片形状由压扁状逐渐向撑圆状变化;受水平位移和道床沉降影响的隧道管片范围为10环,受收敛位移影响的隧道管片范围为20环;受注浆施工叠加影响,隧道管片最大的水平位移、水平和竖直收敛及道床沉降均发生在注浆区间中部位置。  相似文献   

8.
为研究基坑分段开挖时下部盾构隧道的纵向变形规律,以某分段开挖基坑小角度斜跨盾构隧道工程为例,采用对比法和归纳法,通过数值模拟分析,得出基坑分段开挖时下部盾构隧道纵向变形规律。研究表明:(1)基坑分段越越短,其下部盾构隧道最大隆起位移值越小,隧道隆起范围越小;(2)开挖分段个数与隧道隆起位移峰值个数相同,分段越均匀,峰值大小越接近;(3)应优先开挖叠交核心区中段基坑,而非两侧基坑;(4)隧道纵向各相邻部位对彼此变形的单向调整比率约为5.71%。可通过调整分段开挖顺序对隧道最大隆起位移的出现位置进行调整。  相似文献   

9.
为研究盾构隧道侧穿邻近基坑过程中对基坑结构的影响,以三阳路越江隧道侧穿汉口风塔配套综合开发项目(二期)深基坑为依托,采用数值模拟方法,对盾构分别侧穿基坑开挖到底、地下室底板及负三层结构完成、地下室负二层施作结构完成及地下室结构施工至±0.0m建立三维模型,对比分析四种工况的管片及地连墙结构内力及位移规律。研究结果表明:工况1为最不利工况,拱顶沉降值、地表竖向位移值、管片弯矩值最大,而工况4对应数值最小,相对最安全;基坑内主体结构施作越完整,近隧道侧地连墙位移越小、盾构侧穿对基坑影响越小,管片最小曲率半径越大。研究成果可为隧道侧穿深基坑分析提供理论依据,也可为类似工程提供参考。  相似文献   

10.
为解决山体内部大埋深、大直径盾构始发难题,提出两段式蘑菇形大断面盾构组装洞设计方案。通过数值模拟对蘑菇形组装洞在不同施工阶段的变形特征进行了探究。研究结果表明:拱顶最大变形发生于所在断面开挖阶段;洞室两侧朝向洞室的变形对上部结构向下变形的限制作用从拱顶向两侧有所减弱;拱脚水平变形呈现出先增大后减小,再增大后减小的趋势,且测点最大水平变形均发生在非所在断面开挖阶段;下断面开挖使得拱脚水平变形逐渐由背离洞室转变为朝向洞室;远离拱顶位置的水平变形受下断面开挖影响更显著;下断面水平变形方向为朝向洞室,且蘑菇头开挖对下断面测点先行位移有显著影响。  相似文献   

11.
为了解决小净距重叠隧道下穿准高速铁路的安全施工问题,采用数值计算的方法,对上下重叠隧道不同施工顺序引起的地层变形、管片结构位移和受力情况进行分析。结果表明,采用"先下后上"开挖方式时,地表沉降、隧道管片结构竖向位移及其弯矩均小于"先上后下"开挖方式。当采用"先下后上"盾构掘进时,上隧道引起的最大地表沉降为13. 934 mm;采用"先上后下"时,最大地表沉降为15. 516 mm(沉降控制值为10 mm)。对铁路线路、上下隧道间夹层土体和铁路路基软土进行加固后,地表沉降数值计算值为9. 525 mm,实际观测最大值为5. 9 mm(均在控制值范围内)。该研究结论为重叠隧道顺利下穿准高速铁路施工提供了关键技术支持。  相似文献   

12.
基于非线性接触理论,在管片间简化设置挤压与摩擦关系模拟管片接头结构,以贵州省某市实际工程为背景,建立非连续接触盾构隧道模型,分析桩基施工与承载阶段对既有盾构隧道变形的影响。研究结果表明:本工程中,桩基承载阶段对土体竖向的主要影响范围约为桩径的15倍、桩长的1.7倍,对土体侧向的主要影响范围约为桩径的5.5倍、桩长的0.6倍。综合变形较大值主要集中在拱顶、拱腰以及拱底处,盾构隧道在非连续模型下受力变形时,管片间出现明显错台,这表明本模型能较好地模拟出既有盾构隧道在桩基施工承载时的受力变形。桩基施工阶段,竖向变形最大值出现在拱顶部位,约为0.21mm。桩基承载阶段,竖向变形最大值仍出现在拱顶部位,约为0.73mm,盾构隧道在竖向变形上主要受桩基承载阶段影响。桩基施工与承载阶段,横向变形最大值均出现在线内拱腰处,分别约为0.21mm与0.23mm,横向变形值增量不大,盾构隧道在横向变形上主要受桩基施工阶段影响。  相似文献   

13.
针对新建盾构隧道下穿施工时,对既有上卧盾构隧道结构的扰动影响问题,应用非线性接触理论和多尺度混合建模技术,建立三维非连续精细化数值模型,重点分析隧道正交下穿施工扰动下,既有上卧盾构隧道管片与接头受力和变形规律。研究结果表明:新建隧道下穿施工诱发既有上卧盾构隧道整体下沉,表现为隧道结构竖向收敛波动和仰拱沉降显著;纵缝接头变形以张开为主,环缝接头变形以错台为主,且同一环中拱顶处变形最大;环缝接头应力集中明显,靠近交叉点处管片环缝的最大、最小应力均接近混凝土强度设计值,局部裂损风险高;受下部开挖影响,上卧盾构隧道环缝接头螺栓剪应力值增加显著。  相似文献   

14.
以厦门地铁1号线集美中心站站后停车线隧道工程为背景,采用FLAC3D三维有限差分软件,对此大断面矿山法隧道开挖对小净距盾构隧道的影响进行了三维数值分析。分析了CRD(交叉中隔墙)四步开挖法、CRD六步开挖法(靠近盾构隧道部分后开挖)及CRD六步开挖法(靠近盾构隧道部分先开挖)对盾构隧道的影响,揭示了盾构隧道位移和管片弯矩的变化规律:大断面矿山法隧道开挖时对先施工的小净距盾构隧道产生4~9 mm的位移值,盾构管片产生80~170 kN·m的弯矩值。另外,CRD四步开挖对盾构隧道不利,盾构隧道的位移和弯矩分别增大约33%和6%,并且靠近盾构隧道的部分对盾构扰动更大,因此,推荐使用CRD六步开挖法(靠近盾构隧道部分后开挖)。最后对比分析了盾构隧道的现场监测位移值和数值模拟结果。  相似文献   

15.
以南京地铁11号线下穿南京长江大桥北引桥为工程背景,利用数值模拟软件研究地铁施工过程中临近桥桩的变形和受力变化规律。研究结果表明,当桥桩底标高和隧道底标高平齐时,地铁施工会使得桥桩产生竖向刚体位移1.15m m,在与隧道轴线平齐处桥桩侧向位移最大达到2.06mm;桥桩中部竖向正应力最大达到0.64MPa,相比开挖前增长了276%;隧道开挖扰动影响桥桩变形和受力的范围为桥桩距隧道掌子面水平距离前后20m。为确保桥桩的稳定,需采取相应的加固措施减小隧道开挖扰动的影响。  相似文献   

16.
盾构隧道朝着超大断面发展,其内部结构形式愈加复杂多样化,内部结构对盾构隧道纵向力学性能的影响值得探讨。为研究考虑公轨合建型内部结构的盾构隧道纵向力学性能,以济南黄河隧道为工程背景,建立31环考虑公轨合建型内部结构的盾构隧道三维有限元实体模型,以集中力的形式作用在第16环管片环进行加载。结果表明:盾构隧道考虑内部结构后,通缝拼装隧道和错缝拼装隧道纵向刚度有效率分别提高21.4%~61.9%和14.3%~35.3%,说明内部结构能够有效提高盾构隧道的纵向刚度;通缝拼装隧道和错缝拼装隧道加载环最大Mises应力分别减小61.3%和69.2%,说明内部结构能够起到承载作用;隧道管片与内部结构会发生应力集中现象;错缝拼装形式有利于减小内部结构在纵向上的位移变形,同时内部结构的侧墙在施工时应尽可能保证混凝土的密实。  相似文献   

17.
地面基坑位于地铁区间隧道上方时,由于基坑开挖的卸荷作用会对下方地铁隧道的变形内力产生一定影响。以昆明某人行地道基坑上跨地铁盾构区间隧道为例,模拟基坑开挖过程,分析了各工况下基坑开挖对下卧地铁盾构隧道的变形和内力变化规律。分析研究表明基坑开挖会引起盾构隧道整体上浮,盾构隧道轴力、弯矩均有一定减小,剪力增大,但盾构隧道位移及内力的变化量相对较小,对地铁的安全运营影响较小。  相似文献   

18.
在已建地铁盾构隧道上方近距离开挖深基坑工程中,隧道上浮、基坑回弹隆起和隧道结构变形是施工过程中控制的难点.利用三维数值计算方法,研究基坑开挖过程中盾构隧道的变形规律,并提出可采取的加固措施,分析如何运用时空效应原理,分层、分段开挖基坑,以减小基坑回弹量,确保盾构隧道结构的安全.  相似文献   

19.
地铁双线隧道盾构下穿通信铁塔,风险程度较高。研究盾构近接施工对铁塔位移的影响,对于保证施工中铁塔稳定具有重要意义。以天津地铁6号线盾构隧道下穿通信铁塔为例,通过有限元数值分析软件ABAQUS对盾构施工过程进行模拟。将地表沉降计算值与地表实测值进行对比,验证盾构模拟的合理性。对地铁双线隧道不同位置处下穿通信铁塔时铁塔位移变化进行研究,得到各位置处铁塔位移分布规律。同时分析铁塔受影响较大区域,结果表明在左线隧道开挖过程中,距隧道中心2倍洞径范围内铁塔受影响程度最大;右线隧道开挖过程中,左线隧道左侧2倍洞径至右线隧道右侧2倍洞径范围内铁塔受影响程度最大。  相似文献   

20.
位于即将开通运营某地铁线路一侧的商务中心大型基坑采用桩锚支护形式。由于基坑大范围开挖至基底,围护结构产生了较大位移,导致临近的地铁盾构隧道发生了严重变形。为了保证隧道的安全,立即对基坑进行了回填土反压处理。通过监测,在明确隧道的变形和基坑的位移趋于稳定后,设计方编制了基坑的抢险复工方案,施工方根据该方案,采取了分块开挖的方式,完成了商务中心地下室结构的施工。隧道的后续变形控制在设计方提出的建议值之内,隧道管片经过加固处理后能够继续使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号