首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
移动荷载作用下板式轨道的有限元分析   总被引:15,自引:2,他引:15  
用有限元法分析了板式轨道在移动荷载作用下的动力响应。视板式轨道为如下模型:钢轨为离散粘弹性支点支承的长梁;轨道板为连续粘弹性基础支承的短梁。视板式轨道及移动荷载为一个系统,运用弹性系统动力学总势能不变值原理及形成矩阵的"对号入座"法则建立该系统的振动方程组。研究了移动荷载的速度、钢轨的类型和钢轨支点的弹性系数对钢轨及轨道板动力响应的影响。算例结果表明:在其他参数相同的情况下,增大钢轨支点的弹性系数,钢轨的动力响应减小;使用较重型的钢轨有利于减小钢轨和轨道板的动力响应;随着移动荷载速度的提高,钢轨和轨道板的动力响应增大。  相似文献   

2.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

3.
针对无限长轨道上车辆一轨道耦合振动响应特性,建立了铁路直线轨道结构空间振动模型。采用有限单元法,将轨枕和钢轨离散为线性粘弹性点支承梁单元,运用弹性系统总势能不变值原理及形成矩阵的“对号入座”法则,建立了模型的振动方程组,采用轨道不断“增加和缩减”方法,使得模型的质量、阻尼和刚度矩阵及荷载列阵具有时变特性。运用既有的车辆动力学模型和实测参数,计算了轨道长度为4km的车辆一轨道耦合振动响应值,钢轨位移、轮对摇摆力以及车体加速度等指标计算幅值与实测幅值接近,验证了该模型的可行性。  相似文献   

4.
采用轨段单元模拟弹性支承块式无砟轨道结构。钢轨模拟为弹性点支承Euler梁;钢轨下面的支承块视为刚体;道床板视为弹性薄板,并且采用横向有限条与板段单元法对其进行位移插值;钢轨扣件和支承块下胶垫和套靴模拟为线性弹簧和阻尼器;道床板与混凝土底座下的路基模拟为连续分布面弹簧和阻尼器。基于弹性系统动力学总势能不变值原理和形成系统矩阵的“对号入座”法则,建立了高速列车-弹性支承块式无砟轨道系统竖向振动矩阵方程,得到了系统振动响应,进一步分析了套靴刚度和阻尼对此系统竖向振动响应的影响规律。  相似文献   

5.
用Timoshenko梁、Euler梁分别模拟钢轨、直线电机定子与反力板,用集中质量块、三维实体有限元分别模拟有砟轨道、板式轨道,建立了直线电机车辆/轨道耦合动力学模型,分析了2种轨道上不同磨耗程度车轮对轮轨法向力和脱轨系数的影响.计算结果表明:当车辆以速度为60 km·h-1通过半径为300 m的曲线轨道时,在板式轨...  相似文献   

6.
不同无砟轨道类型对车辆动力学特性影响的数值分析   总被引:1,自引:1,他引:0  
利用车辆-轨道耦合动力学理论,建立了不同类型无砟轨道垂向耦合动力学模型,分别计算了整体式无砟轨道、板式无砟轨道以及浮置板式无砟轨道在列车运行下的振动响应,分析比较系统振动响应受无砟轨道道床类型、车速、不平顺波深、扣件刚度和板下弹簧刚度的影响。结果表明,系统振动响应均随车速的提高而增大;车速、不平顺波深、扣件刚度和板下弹簧刚度对整体道床式无砟轨道系统振动响应影响最大,板式无砟轨道次之,对浮置板式无砟轨道系统振动响应影响最小;相对而言,浮置板式无砟轨道动力特性最好,其次为板式无砟轨道,整体式无砟轨道的动力特性最差。  相似文献   

7.
为了研究高速列车荷载作用下,Ⅰ型轨道板端部与CA砂浆层间的离缝现象对钢轨、轨道板及车辆的力学性能的影响,建立了车辆-Ⅰ型板式轨道垂向耦合动力学分析模型.以轮轨力、钢轨位移及加速度、轨道板位移,拉应力及加速度、车辆加速度为评价指标,分析了不同离缝长度和高度工况下上述指标的变化规律.研究结果表明:板端离缝长度越短,轨道板越容易脱空受力;轨道板脱空受力时的离缝高度等于该离缝长度下板的竖向最大位移;离缝长度及高度的变化对轨道结构及车辆的受力状态均有影响,但离缝长度的影响更大;长度不大于0.6 m的板端离缝主要使钢轨及轨道板的变形及受力状态恶化,长度大于0.6 m的板端离缝也会使车辆的振动加速度超过容许值.   相似文献   

8.
车辆-轨道耦合动力学钢轨模型求解方法   总被引:1,自引:0,他引:1  
应用车辆-轨道非线性耦合动力学模型,分析了采用解析方法的模态叠加法、有限元法的模态叠加法和有限元法的直接积分法求解车辆-轨道耦合动力学钢轨模型的计算精度与计算效率.选取Bernoulli-Euler梁或Rayleigh-Timoshenko梁模拟钢轨,采用不同类型单元离散钢轨模型,并利用显式积分方法求解车辆-轨道耦合动...  相似文献   

9.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

10.
基于Timoshenko梁模型的车辆-轨道耦合振动分析   总被引:6,自引:1,他引:6  
运用车辆-轨道耦合动力学理论,建立了基于Timoshenko梁钢轨模型的车辆-轨道耦合振动模型,分析了钢轨的固有振动特性,初步探讨了车辆-轨道系统的动力响应,结果表明,Timoshenko梁钢模型在固有振动及强迫振动两方面均与Euler梁钢轨模型有明显不同,前者能更详细地描述钢轨的高频特性。  相似文献   

11.
采用35自由度的多刚体车辆系统与三层弹性离散点支撑轨道模型,建立了基于Timosh-enko梁模型的车辆/轨道耦合动力学模型,应用新型显式积分法求解其运动特性。考虑钢轨横向、垂向和扭转运动对轮轨滚动接触几何关系的影响,分别由Hertz法向接触理论和沈氏蠕滑理论计算了轮轨法向力和轮轨滚动接触蠕滑力。假设轨枕垂向支撑高度沿纵向非均匀分布来模拟轨枕支撑硬点,基于移动轨下支撑模型,分析了不同轨枕支撑硬点个数和高度对系统动力响应的影响。分析结果表明,轨枕支撑硬点对轨枕的动力响应影响显著。当硬点高度为1.0 mm时,最大钢轨/轨枕作用力约为正常状态下的2倍,最大钢轨/轨枕拉力约为正常状态的10倍,这将加速轨枕、轨下垫层及钢轨扣件状况的恶化。而支撑硬点个数对系统动力响应的影响很小。  相似文献   

12.
路基上CRTSⅡ型板式轨道裂纹影响分析   总被引:3,自引:0,他引:3  
为分析路基上CRTSⅡ型板式无砟轨道轨道板开裂对车辆和无砟轨道结构的影响,根据弹性地基梁理论、有限元方法和轮轨系统耦合动力学理论,建立了弹性地基梁体的有限元模型和车辆-轨道-路基垂向耦合振动模型.采用大型有限元软件ANSYS/LS-DYNA,分析了轨道板开裂对轨道结构的静、动力学性能和行车性能的影响.分析结果表明:轨道板开裂对轨道结构受力的影响较小,不影响行车的平稳性和安全性;随列车速度增大和轨道板开裂,均会增大轮轨作用力和轨道结构的动力响应;在裂缝地段,应采取减振、隔振、控制轨道几何不平顺等措施降低轨道结构的动力响应;轨道板开裂将影响无砟轨道的耐久性和使用寿命,应及时修补.   相似文献   

13.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

14.
轨道不平顺激励下直线电机车辆/轨道动力响应   总被引:2,自引:0,他引:2  
为了提高直线电机轮轨交通车辆运行的安全性与乘坐舒适性,分析了车轨结构特征,建立了直线电机车辆/板式轨道横、垂向动力学模型。通过三角级数法得到轨道随机不平顺的时间序列,以其作为系统激励,分析了直线电机车辆与轨道的随机振动特性。把轨道不平顺描述为余弦函数,研究了高低不平顺与方向不平顺的波长和幅值对系统动力响应的影响规律。计算结果表明:磁轨气隙变化的频率主要集中在1.2~2.0Hz范围内,波长小于10m的高低和方向不平顺对系统轮轨作用力、脱轨系数及轮重减载率等影响显著增大,应予以重点控制。  相似文献   

15.
客货共线条件下CRTS I型板式无砟轨道CA砂浆与轨道板普遍存在离缝,为了得到CA砂浆离缝高度对轨道结构动力响应的影响规律,基于车辆-轨道耦合动力学以及子结构模态叠加法,将ANSYS计算的轨道部件子结构的自振特性输入SIMPACK,使用力元连接轨道各部件形成轨道系统,通过轮轨接触面及柔性钢轨节点间的位移和力的数据传递,实现列车和轨道子系统的耦合,建立了含CA砂浆离缝的CRTS I型板式无砟轨道的垂向耦合模型,研究了客货混运条件下CA砂浆离缝高度对轨道结构动力响应的影响. 研究表明:随CA砂浆离缝高度增大,钢轨动态位移、轨道板振动响应及CA砂浆动应力均显著提高;当CRH380通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.24 mm和0.27 mm,轨道板在25 Hz处振级分别增大了21.0 dB和21.7 dB,离缝根部砂浆最大动应力均达到0.2 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响趋于平缓;当SS7E通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.48 mm和0.66 mm,轨道板在8 Hz处振级分别增大了15.5 dB和19.4 dB,离缝根部砂浆动应力分别达到0.24 MPa和0.36 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响仍有较大的增长.   相似文献   

16.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

17.
为了优化坡道上钢弹簧浮置板轨道的设计, 在考虑轮轨纵向作用关系与钢弹簧浮置板轨道特点的基础上, 运用多体动力学理论和有限元法建立了紧急制动条件下地铁车辆与钢弹簧浮置板轨道动力相互作用模型, 利用多体动力学软件UM验证了模型的有效性, 分析了车辆与轨道的动力响应。研究结果表明: UM软件与本文模型计算得到的车体纵向加速度和轮轨纵向力平均相对误差分别为1.3%、2.8%;在紧急制动过程中, 车体始终处于向前点头和纵向振动的状态, 导致前轮增载, 后轮减载; 由于板与板之间不连续, 钢轨和浮置板之间会产生纵向相对错动, 须注意钢轨与浮置板之间不协调的纵向变形; 间隔2组扣件布置一对隔振器方案(方案1) 所得板端钢轨垂向位移比板中大0.2 mm, 间隔2组扣件布置一对隔振器, 再间隔3组扣件布置一对隔振器方案(方案2) 所得板端钢轨垂向位移比板中小0.5 mm; 2种布置方案下, 轨道纵向变形相差不超过5%, 扣件和钢弹簧受到的纵向作用力相差不超过15%;短波轨道不平顺显著加剧了钢轨和浮置板的垂向振动效应, 不平顺状态下钢轨最大垂向加速度可达15g左右; 钢弹簧浮置板轨道可以降低传递到基础底部的垂向振动, 加速度降幅约为0.2 m·s-2, 但会显著放大低频段钢轨、浮置板的垂向振动, 振动量增幅约为15 dB。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号