首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为精确预测高速公路站间旅行时间,融合收费数据和微波车检数据开展预测. 首先,基于两种数据源的预测结果,采用决策级融合策略;然后,建立了权重分配预测模 型、BP神经网络预测模型;针对神经网络收敛速度慢,易陷入局部最优的缺陷,基于遗传 算法优化BP神经网络预测模型;最后,利用京哈高速公路北京段收费数据和微波检测器 数据对3 种融合模型进行了验证,对比工作日及非工作日2 种交通流状态下3 种模型的性 能指标.试验结果表明,基于遗传神经网络的融合模型相比其他2 种模型,预测精度及稳 定性均得到了较高的提升,相对误差控制在10%以内,能够更好地满足实际需求.  相似文献   

2.
高速公路动态交通流Elman神经网络模型   总被引:5,自引:0,他引:5  
为了提高高速公路交通流建模的精度,分析了离散的高速公路动态交通流数学模型,基于Elman网络原理,建立了回归神经网络交通流模型。回归神经网络的输入层、上下文层、隐含层和输出层的节点数目分别选为8、30、30和2,采用Levenberg-Marquardt算法对回归神经网络进行训练,并对一条5路段的高速公路进行仿真。结果表明:回归神经网络平均相对误差为8.683 7×10-5,最大相对误差为4.237 1×10-4,与BP神经网络和RBF神经网络相比较,Elman回归神经网络能更好地逼近交通流数学模型,真实地描述交通流基本特性,能准确地建立动态交通流模型,适应交通状况的变化。  相似文献   

3.
K近邻短时交通流预测模型   总被引:1,自引:0,他引:1  
为了准确预测道路短时交通流,构建了基于K近邻算法的短时交通流预测模型。分析了K近邻算法的时间和空间参数,提出4种状态向量组合的K近邻模型:时间维度模型、上游路段-时间维度模型、下游路段-时间维度模型与时空参数模型。以贵州省贵阳市出租车的GPS数据对几种K近邻模型进行了检验。分析结果表明:带有时空参数的K近邻模型具有更高的预测精度,其预测误差最小,平均为7.26%。基于指数权重的距离度量方式能更精确的选择近邻,其预测误差最小,平均为5.57%。与神经网络和历史平均模型相比,带有指数权重的K近邻模型具有更好的预测精度,平均预测误差仅为9.43%。可见,带有时空参数与指数权重的K近邻模型可作为道路短时交通流预测的有效手段。  相似文献   

4.
为了克服交通流时空不稳定性导致的检测数据误差,提高预测点速度的精度,在比较传统灰色预测模型和反向(BP)神经网络预测模型优缺点的基础上,建立了灰色神经网络点速度预测模型.该模型综合了灰色预测模型所需数据少及神经网络具有的自学习和自适应能力的特点.以实测值作为输出数据,构建不同的灰色预测模型,将各灰色预测模型的预测结果作为BP神经网络训练的输入数据,得到最佳的预测模型.实例分析表明:与传统灰色理论及BP神经网络预测模型相比较,在20、40和60s采样间隔条件下,本文模型预测结果与实测值的相对误差平均减少了32%,为交通运行状态评价和行程时间预测提供了依据.  相似文献   

5.
在总结交通流短期预M方法发展趋势的基础上,分别介绍了基于常规的BP神经网络和基于RBF神经网络的交通流量短期预测模型,并重点研究RBF网络模型的预测性能,确定了关健参数、的最优值.最后应用两种模型时北京环路实测交通流数据进行了预刚分析,实验结果表明,两种模型都可以满足实际交通流诱导的需要,BP模型在预则精度上稍优于RBF模型,但后者在学习速度和学习稳定性等方面明显优于前者.  相似文献   

6.
在对城市停车需求分析基础上,提出利用总停车需求、公共停车需求、私人停车需求作为城市停车需求的判别指标。基于BP神经网络对多输入与多输出的数据具有较良好的拟合能力的特点,建立基于BP神经网络的城市停车需求预测模型。以佛山市某停车场为例,分析BP神经网络在停车需求中的适应性,仿真结果表明:BP神经网络预测模型对每组数据的预测相对误差最大为18.80%,最小相对误差为6.21%,符合预测精度要求,具有一定的实际操作性。  相似文献   

7.
应用BP神经网络来对路段短时交通流进行预测,预测精度和收敛速度都不是很理想,为了克服BP神经网络自身存在的非线性逼近缺陷,依据小波的时频域特征,将小波变换和BP神经网络结合起来,提出一种基于小波神经网络的短时交通流预测方法,给出了具体的网络学习算法,并结合实地调查数据进行了对比测试,分析结果证明了小波神经网络模型对短时交通流预测的有效性.  相似文献   

8.
分析原油价格对油轮运价指数的影响关系,并预测油轮运价指数发展变化趋势.本文通过Granger因果关联分析,原油价格是油轮运价指数的3阶Granger因.因此,建立了3阶ARCH模型对油轮运价指数进行了预测,预测精度在8%之内.根据油轮运价指数的自身非线性变化趋势,建立了三层BP神经网络模型预测油轮运价指数的发展趋势,精度在3%以内.为进一步提高模型的预测精度,结合ARCH预测模型和BP神经网络预测模型的特点,通过预测误差最小化模型,确定组合权重,建立了新的组合预测模型对未来油轮运价指数进行分析预测,模型的精度控制在2%以内,预测精度显著提高.此研究对油轮运价指数的预测提供了较好的方法.  相似文献   

9.
为了预测路口交通信号控制所需的转向交通流量,提出了基于改进BP(back-propagation)神经网络的路口交通流转向比预测模型,给出了相应参数的计算方法;采用自适应学习率和动量梯度下降法以提高神经网络的学习速度和算法的可靠性,并用调查数据对模型进行了检验.研究结果表明,与传统的平均值法相比,用所提出的模型,平均绝对相对误差减小约1%~3%.  相似文献   

10.
铁路货物周转量的半参数回归模型预测   总被引:2,自引:0,他引:2  
为提高铁路货物周转量预测的准确性,在定性分析的基础上,运用灰色关联度理论选择出反映铁路运输供给能力的7个因素,并用偏最小二乘回归方法处理变量的共线性问题.采用非参数方法表达不能量化的影响因素,建立了半参数回归模型,并与线性回归模型和灰色预测模型进行了比较.研究结果表明,用半参数回归模型预测铁路货物周转量,预测结果的相对误差仅1.7%,比线性回归模型和灰色预测模型的预测精度更高.  相似文献   

11.
道路网短期交通流预测方法比较   总被引:27,自引:1,他引:27  
介绍了用于短期交通流预测的两大类模型:统计预测算法和人工神经网络模型.对其中各种模型的特征进行了比较,将历史平均模型、求和自回归滑动平均模型(ARIMA)、非参数回归模型、径向基函数(RBF)神经网络模型与贝叶斯组合神经网络模型,应用于一个真实路网的短期流量预测,比较了各模型的预测结果.结果表明,组合神经网络模型预测误差最小,可靠性最高,是一种对短期交通流预测的有效方法.  相似文献   

12.
欧阳帆 《交通标准化》2013,(12):133-136
在传统多种单项预测模型与组合预测方法的基础上,利用BP神经网络技术的非线性映射能力,在多个预测模型与实际数列之间建立一种非线性关系,对运量预测结果进行优化,以达到提高预测精度的目的.通过实例分析,表明这种经过BP神经网络优化后的预测模型,可一定程度上克服传统单个预测模型的部分局限性,提高预测精度,用于运量预测是可行的.  相似文献   

13.
针对城市道路交通系统的复杂性和随机性,应用灰色理论和神经网络知识,建立了基于灰色理论和BP神经网络的城市道路交通量GM-BP神经网络预测模型.随后运用该预测模型对城市道路的交通量进行预测,预测结果表明:GM-BP神经网络预测模型所得预测结果平均相对误差为1.17%,与单一的灰色新陈代谢预测模型相比具有预测精度高的优点.  相似文献   

14.
为了提高船舶交通流量的预测精度,在BP神经网络的基础上,结合遗传算法(GA)建立一个新的预测模型.该模型利用GA自适应搜索能力和较快的收敛速度,进而确定BP神经网络中的最优权值和阈值.以青岛港2011—2019年船舶交通流量统计数据为例,进行仿真实例验证.结果表明,与传统的BP神经网络相比,该模型能显著地提高船舶交通流量的预测精度,用于预测船舶交通流量具有一定可行性.  相似文献   

15.
准确的短时交通流预测是交通控制和交通诱导的依据. 提出一种基于改进灰狼算法(TGWO)优化BP 神经网络的短时交通流预测模型(TGWO-BP),有效提高短时交通流预测精度. 针对标准灰狼算法(GWO)收敛速度慢,容易陷入局部极值的问题,提出一种自适应递减的收敛因子,使灰狼算法区分全局搜索和局部搜索;改进灰狼个体的位置更新公式,引入惯性权重,调节惯性权重大小使灰狼算法具有跳出局部极值的能力;对比分析TGWO-BP、GWOBP 、PSO-BP、BP这4 种短时交通流预测模型,结果显示,TGWO-BP的短时交通流预测模型误差为10.03%,达到较好的预测精度.  相似文献   

16.
免疫理论中的基于浓度选择机制能避免粒子群算法在群体收敛性和个体多样性平衡问题上的不足,使改进后的粒子群算法优化BP神经网络参数的配置,提高短时交通流量预测的准确性。仿真实验表明:免疫粒子群优化后的BP神经网络可有效提高短时交通流量的预测精度,减小预测误差。  相似文献   

17.
基于优化PSO-BP算法的耦合时空特征下地铁客流预测   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡惯性权重的粒子群优化(PSO)算法,优化了BP神经网络,形成了考虑复杂因素影响的地铁客流预测系统;选取了换乘站、非换乘站的首站与中间站,引入天气、节日、非节日因素,对比了不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差。研究结果表明:考虑天气、节日、非节日因素,换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了40.13%、31.46%和23.89%,较分时段的BP神经网络模型分别平均下降了17.50%、17.86%和17.32%;非换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了16.50%、20.99%和32.59%,较分时段的BP神经网络模型分别平均下降了11.48%、12.10%和17.73%;各站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差、平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了24.37%、24.48%和29.69%,较分时段的BP神经网络模型分别平均下降了13.49%、14.02%和17.59%,因此,利用考虑多影响因素的优化PSO-BP神经网络模型能提高地铁客流预测的准确性。   相似文献   

18.
现代交通系统结构复杂,涉及的数据类型和数量众多,模糊性、随机性和不确 定性等因素的存在增加了数据分析过程中定性与定量综合集成的难度.本文对城市交通 流预测进行了研究,根据云模型和自组织神经网络的特点,构建了云-自组织神经网络 交通流预测模型.该预测模型运用云模型处理数据的模糊性和随机性问题的优势,提高了 自组织神经网络预测中学习样本数据的可靠性.通过对某城区的实际数据进行对比测算, 改进的预测模型比单纯使用自组织神经网络预测模型决定系数更高.结果表明,本文提出 的模型在交通流预测中提高了准确率,降低了预测泛化误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号