首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究山区弯道景观对行车安全的影响,构建了仿真流程,研究了车辆横向滑移事故判断方法、驾驶员前方视野范围内障碍物或车辆产生方法、驾驶员视距计算及仿真车辆安全状态判断方法;用VB语言编写仿真程序,仿真分析了不同车速、弯道半径、景观位置对车辆运行安全性的影响.研究结果表明;设计车速为60 km/h且景观至路边距离相同时,大半径弯道较小半径弯道的危险概率减少约58%;曲率半径相同时,较高设计车速的道路景观对行车影响较小,中半径弯道设计车速为80 km/h较60 km/h的危险概率减少约33%.  相似文献   

2.
对于现今弯道路段速度控制精确性不足,在TruckSim软件中全面考虑了某三轴货车的悬架动刚度特性、车身侧倾角度、轮胎非线性特性,建立了整车动力学、道路场景、驾驶策略及横向载荷转移率(PLTR)模型.通过不同弯道半径、重心高度和车速的交互式仿真实验,将仿真实验数据经三维曲面函数拟合,获得了不同附着系数下车辆转弯安全车速的侧滑数学模型,为弯道车速控制途径的产生提供了参考.研究结果表明:安全速度与重心高度、弯道半径呈现不同程度的相关性;归纳比较侧滑模型与弯道安全速度模型,可知弯道安全车速值偏于安全,并处在通用模型的安全理论值之间;考虑了纵坡对安全车速值的影响,发现在较大半径圆曲线上行驶偏于安全;建立弯道半径为300 m,重心高度为1.8 m的仿真工况,基于PLTR交互模型得出的安全车速值与该模型得到的安全车速值进行对比,计算误差从通用模型的18.4%降低到0.3%.  相似文献   

3.
以山区低等级公路弯坡组合路段为研究对象,在考虑非线性汽车动力学特征的基础上,根据车身运动、轮胎力学特性及弯坡组合路段道路特征的内在联系,建立适用于山区低等级公路弯坡组合路段汽车转向制动稳定性的非线性动力学分析模型.运用仿真实验的方法分析汽车在不同弯坡组合路段上的行驶工况,得到山区低等级公路的圆曲线半径、超高、坡度值以及车速之间的耦合影响关系:随着车速减小,公路超高值增大,纵坡值减小,汽车稳定安全行驶最小半径极限值减小;当超高值达到8% 时,随着纵坡变化,圆曲线半径极限值不变.  相似文献   

4.
为了在道路设计阶段预测车速,保证公路几何线形的协调性,建立了考虑侧向容许加速度、纵向加速度、制动减速度、制动热衰退和环境速度与线形参数关系的模型,计算了期望速度;建立了公路-驾驶者-车辆-环境仿真系统,对在三维路面上的行驶车辆进行仿真,得到并分析了试验道路的运行速度曲线.结果表明:(1)为有效控制速度波动,应取相近的曲线半径和直线长度,且直线不宜过长;(2)出弯道加速长度大于进弯道减速长度,且二者都大于回旋线长度;(3)山区路线由多个急弯构成时,速度曲线频繁波动的部分原因是车辆自身旋转动能和平动动能的相互转化;(4)运行速度协调性方法不适用于四级公路的线形评价;(5)偏角越小,轨迹对弯道的切角作用越大,弯道车速越高.  相似文献   

5.
根据山区圆曲线路段的特点,分析了轮胎的受力和变形情况,建立了半挂汽车列车与山区圆曲线路段的耦合动力学模型。以牵引车和半挂车的轮胎侧偏角和折叠角为指标,运用提出的动力学仿真法分析了不同车速下圆曲线路段半径、超高、滑动附着系数对半挂汽车列车行驶安全性的影响,并与运行速度法和理论极限速度法的计算结果进行对比。仿真结果表明:当圆曲线半径为125m,路面超高为2%,滑动附着系数分别为0.20、0.35、0.50、0.80时,运用动力学仿真法求得的临界安全车速分别为20、35、55、72km·h-1,运用运行速度法求得的临界安全车速均为50km·h-1,运用理论极限速度法求得的临界安全车速分别为18、20、25、30km·h-1;当圆曲线半径为250m,滑动附着系数为0.35,超高分别为0、2%、4%、6%时,运用动力学仿真法求得的临界安全车速分别为35、38、25、20km·h-1,运用运行速度法求得的临界安全车速均为60km·h-1,运用理论极限速度法求得的临界安全车速分别为30、31、32、33km·h-1;当路面超高为6%,滑动附着系数为0.50,圆曲线半径分别为125、250、400、650m时,运用动力学仿真法求得的临界安全车速分别为58、62、70、72km·h-1,运用运行速度法求得的临界安全车速分别为50、60、68、71km·h-1,运用理论极限速度法求得的临界安全车速分别为28、37、48、60km·h-1。可见,提出的动力学仿真法考虑了车辆悬架动力学特性、天气与路面条件,可以准确描述半挂汽车列车的运行状态。  相似文献   

6.
车辆以一定的车速在圆曲线上行驶,车辆所产生的离心力由路面的横向力系数及超高来共同抵消,不同半径圆曲线对应不同的超高数值和横向力系数,横向力系数与圆曲线半径的倒数成非对称竖曲线关系.  相似文献   

7.
研究了汽车侧翻影响因素对其侧翻的影响程度,应用ADAMS/Car模块建立汽车侧翻的动力学模型,基于ADAMS的仿真原理,对影响汽车侧翻的因素:速度、弯道半径、路面附着系数和质心高度进行分析,获得了各因素对汽车侧翻影响的趋势.应用正交试验法,以轮胎横向荷载转移率的最大值作为侧翻风险的评价指标,对汽车侧翻因素的影响程度进行分析.研究表明所研究的四个主要因素的影响程度由大到小依次为弯道半径、车速、质心高度、数路面附着系数,为提高公路运输安全,提供了很有参考价值的理论数据.  相似文献   

8.
为了研究山区道路车辆的行驶安全,在构建车辆动力学模型的基础上,解算车辆的行驶状态,分析纵坡坡度、横向超高以及行车速度等单一因素下的车辆动力学响应;以最大横摆角速度与稳态横摆角速度为指标,分析组合因素对车辆行驶稳定性的影响。结果表明:当车速保持不变时,横摆角速度随超高的增加而减小,随纵坡坡度的增加而增大;对于相同的道路几何线形,车速越高,横摆角速度越大,行车风险越高。  相似文献   

9.
依据纵坡弯道车辆荷载作用特性,建立纵坡弯道桥面铺装结构三维有限元模型,分析车辆载重、行驶速度、弯道半径、纵坡坡度、沥青铺装层厚度与模量对水平剪应力的影响。结果表明:设计时避免最小半径极限值与纵坡坡度最大值同时出现,适当增大沥青铺装上层模量、铺装层总厚度、减小沥青铺装下层模量,并严格控制纵坡弯道上车速及车辆载重,可减少沥青铺装层发生推移病害的可能性。  相似文献   

10.
为使公路设计线形尽可能连续、协调,从本质上达到安全设计的目标,保障车辆行驶安全,基于运行速度设计法,探讨了公路平面线形指标、纵断面线形指标、超高指标、视距指标等在公路路线设计中的选取及其与车辆运行安全的关系。通过典型实例,采用运行速度法对山区高速公路线形指标进行检验评价,基于评价结果修正设计参数并采取运行安全控制措施,为运行速度设计方法的应用提供参考。  相似文献   

11.
基于对四川省川西山区农村公路的调查,分析了山区农村公路的交通特点和功能特点,根据汽车行驶速度和汽车行驶理论对山区农村公路平面线形设计中所采用的设计速度进行了分析研究,给出了山区公路圆曲线最小半径的设计参数取值原则和要求。  相似文献   

12.
基于山区高速公路立交出口匝道区域线形指标偏低、气候变化频繁的特点,在限速管理上,提出“匝道动态限速,主线联动限速”的可变限速策略。匝道的限速值是依据车辆横向稳定性和停车视距两个约束条件,并考虑路面附着系数和道路能见度的动态变化特性进行确定。主线受出口匝道影响路段的限速值是依附匝道圆曲线路段限速值和实际减速车道长度进行确定。在参数取值的探讨中,区分了纵向附着系数和横向附着系数的不同影响。研究成果可以为山区高速公路的运营安全管理尤其是限速管理提供借鉴。  相似文献   

13.
高颖 《交通标准化》2011,(12):132-134
通过选取山区某三级公路的某一路段为研究对象,该路段内含有不同半径大小的平曲线。采用动态GPS仪,现场测试车辆行驶的动态速度,并与路段内各种平曲线半径相对照,收集不同半径曲线段的线形资料及速度数据。通过对数据的分析整理,获得该三级公路平曲线半径与行车速度的回归模型,并利用运行速度理论分析该路段平曲线设计指标使用的恰当性和平曲线上实际行车状态的安全性。  相似文献   

14.
回头曲线路段的轨迹曲率特性和汽车过弯方式   总被引:1,自引:0,他引:1       下载免费PDF全文
为了明确山区公路回头曲线上的车辆轨迹特性和驾驶行为偏好,通过实车路试采集了自然驾驶习惯条件下回头曲线路段上的车辆行驶轨迹线和轮迹线-车道线的横向距离等参数,基于实测数据计算了轨迹曲率,分析了轨迹曲率与道路设计曲率之间的关系,确定了轨迹曲率变化模式,提出了轨迹等效半径的概念,研究了回头曲线路段的切弯行为和典型过弯方式. 研究发现:1) 回头曲线的入弯、弯中和出弯均可见严重的车道偏离. 2) 入弯时汽车在缓和曲线之前便已进入曲线行驶状态,出弯时车辆轨迹曲率在驶出缓和曲线之后的直线上降低至0,轨迹曲率的变化率要低于缓和曲线的曲率变化率;左转轨迹的曲率变化率要低于右转轨迹的曲率变化率. 3) 左转轨迹曲率的幅值回头曲线中部低于或者接近道路设计曲率,右转轨迹曲率则高于道路设计曲率. 4) 左转弯的轨迹等效半径要高于弯道设计半径,右转弯轨迹半径最小值和均值普遍则低于设计半径. 5) 驾驶人可以通过不同的切弯方式来实现回头曲线路段轨迹半径的增加和最大化,但需要侵占对向车道. 6) 驾驶人切弯时,左转弯的轨迹半径增量要高于右转弯的轨迹率半径增量,即车辆左转驶入回头曲线是更容易取得切弯效用;在大头线、平头线和小头线(转角分别大于、等于和小于180°) 3类回头曲线中,小头线和大头线上的切弯效果更明显.   相似文献   

15.
为提供不同类型公路几何线形参数的计算依据,在12条不同地形环境、不同等级的公路上采集了小客车和大客车的横向加速度、行驶速度和轨迹曲率半径数据,评估了试验公路的行驶舒适性,给出了六车道、四车道、双车道3类公路的横向加速度特征分位值,针对不同公路类型和车型,建立了横向加速度-曲率半径和横向加速度-速度的均值模型、极限值模型和85分位值模型.研究结果表明:(1)车道数越少,行驶舒适性越差,设计速度低于30 km/h的双车道公路部分路段的行驶舒适性极差;(2)横向加速度累计频率曲线的拐点在第90~92分位,双车道公路的横向加速度最大值大于8 m/s2;(3)行驶轨迹越缓和、车道数越多,横向加速度分布越集中,且大客车的横向加速度分布要比小客车集中;(4)第85分位值模型可用于公路几何参数的最大值与最小值控制,均值模型可用于几何参数的一般值控制.   相似文献   

16.
车速是导致公路平曲线路段路侧事故频发的关键因素,为降低路侧事故率,需进行车速限制研究. 选取8 个路侧事故风险指标进行PC-crash 仿真试验,共收集12 800 条数据. 采用路径分析方法筛选得到显著性风险指标,将其纳入贝叶斯逐步判别分析中,构建对应不同车型的路侧事故判别函数,提出对应不同道路几何设计要素的最高安全车速计算模型. 结果显示:显著性风险指标对路侧事故影响程度,由大到小依次为车速、圆曲线半径、车型、路面附着系数、路肩宽度、纵坡坡度和超高横坡度;道路线形条件越好,保证不发生路侧事故的最高安全限速值越大;在相同道路设计指标下,小型客车最高限速值大于货车最高限速值.  相似文献   

17.
研究了轴箱横向载荷高精度测试方法,将经过标定的轴箱安装于运用车辆,获得了载荷-时间历程,结合车辆运行状态分析了在高速线路典型服役条件下的载荷特性,编制了对应于进出站工况、低速运行、高速运行的恒幅载荷谱。研究结果表明:轴箱横向载荷影响因素主要为列车运行速度、曲线半径、道岔、轨道不平顺;运行中普遍存在着相对固定且与车辆运行速度无关的2 Hz的低载荷主频;对于大于5 Hz的频率,载荷主频与列车的运行速度直接相关,曲线通过时内轨侧轴箱载荷变化幅值稍大于外轨侧,且载荷均值以及最大载荷幅值均随列车运行速度的增大而增大;曲线半径增大的同时横向载荷均值逐渐接近于0,最大载荷幅值也逐渐减小;进出站道岔会造成横向载荷出现约10 s的一次波动,同时包含短时间冲击载荷;横向轨道不平顺会造成轴箱横向载荷在通过相应区间时出现多个大幅波动,随着运行速度的增加,波动周期缩短,峰值减小;进出隧道对横向载荷影响不明显;对于不同运行工况下的载荷谱,进出站工况载荷幅值最大,作用频次占很少部分;低速运行载荷幅值次之,作用频次占比约为1/3,高速运行载荷幅值最小,作用频次占比达到60%以上。   相似文献   

18.
利用ADAMS/CAR建立了某型五轴半挂车(1+5+5)型的车辆模型,以及不同坡度、不同转弯半径的路面文件。仿真分析了车辆在弯坡路面高速下坡行驶的过程,说明了过程中动荷载变化的原因,统计分析了车辆在不同弯坡的路面上行驶产生的动荷载,找到了动荷载随着坡度、转弯半径的变化规律。可为路面设计和车辆设计时考虑动荷载的变化提供参考。  相似文献   

19.
本文提供了一个高速客车迫导向转向架的方案,并对此建立了横向动力学模型,研究高速客车迫导向转向架的稳态曲线通过性能及横向稳定性。本文探讨了该转向架对高速线路曲线半径的要求,对迫导向机构参数的合理选择作了分析。   相似文献   

20.
建立了一种适用于1 435/1 000 mm轨距变换、电机体悬的高速动车组变轨距转向架动车的动力学模型;重点计算在2种轨距线路上动车采用不同的轮轨匹配关系、不同磨耗状态下的运行稳定性分岔特性,并计算了轨距、轮轨游间对运行稳定性的影响;计算了车辆运行垂向和横向平稳性以及在不同曲线工况条件下车辆的曲线通过性能,结合相关动力学标准对各项动力学性能指标进行了评定,并对造成各项动力学指标差异的原因进行了简要分析;以电机体悬式变轨距转向架动车的12个悬挂参数为因子,以车辆蛇行失稳速度、轮轴横向力、轮轨垂向力、轮重减载率和脱轨系数5个动力学指标为响应,采用最优拉丁超立方设计方法进行试验设计;建立径向基神经网络代理模型,采用NSGA-Ⅱ多目标遗传算法对动车主要的悬挂参数进行多目标优化。计算结果表明:在设计工况条件下,所设计的高速动车组变轨距转向架动车在2种轨距线路上运行稳定性、平稳性和曲线通过性能均能满足设计要求;在1 000 mm轨距上运行的稳定性优于1 435 mm轨距情况,但运行平稳性和曲线通过性能劣于1 435 mm轨距情况;优化后的悬挂参数可以兼顾车辆的运行稳定性、平稳性和曲线通过性能,使车辆具有更好的动力学性能,在2种轨距线路运行上所有计算性能指标均满足相关标准。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号