首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
汽车急转向时受离心力作用易发生侧滑、侧翻事故.通过对急转向行驶工况的汽车受力分析,建立汽车以不同转向速度、转弯半径,确定不同附着系数路面上发生侧滑、侧翻的阈值条件,分析不发生侧滑和侧翻所允许的最高转向速度,可为汽车急转向行驶工况的安全性研究和主动控制研究奠定理论基础.  相似文献   

2.
做好山区公路弯道最小半径指标设计是提升山区公路安全性的重要举措.通过对车辆弯道行驶动力学分析,以事故临界状态为限制建立安全模型,讨论了在不同设计车速下,弯道圆曲线最小半径与超高、横向附着系数等参数的关系,通过Carsim仿真软件验证了安全模型的正确性.理论分析及仿真结果表明,弯道设计应重点考虑避免车辆发生横向侧滑失稳,弯道最小半径与超高、横向附着系数值成反比,与车速呈正比,并与车型参数无关,进而提出山区公路弯道最小半径指标优化建议.在实际设计应用中,还应根据预测弯道最大运行车速值和横向附着系数值对最小半径指标进行校核.  相似文献   

3.
杨涛  宋丹丹 《交通标准化》2009,(17):100-103
汽车急转向时受离心力作用易发生侧滑、侧翻事故。通过对急转向行驶工况的汽车受力分析,建立汽车以不同转向速度、转弯半径,确定不同附着系数路面上发生侧滑、侧翻的阈值条件,分析不发生侧滑和侧翻所允许的最高转向速度,可为汽车急转向行驶工况的安全性研究和主动控制研究奠定理论基础。  相似文献   

4.
对于现今弯道路段速度控制精确性不足,在TruckSim软件中全面考虑了某三轴货车的悬架动刚度特性、车身侧倾角度、轮胎非线性特性,建立了整车动力学、道路场景、驾驶策略及横向载荷转移率(PLTR)模型.通过不同弯道半径、重心高度和车速的交互式仿真实验,将仿真实验数据经三维曲面函数拟合,获得了不同附着系数下车辆转弯安全车速的侧滑数学模型,为弯道车速控制途径的产生提供了参考.研究结果表明:安全速度与重心高度、弯道半径呈现不同程度的相关性;归纳比较侧滑模型与弯道安全速度模型,可知弯道安全车速值偏于安全,并处在通用模型的安全理论值之间;考虑了纵坡对安全车速值的影响,发现在较大半径圆曲线上行驶偏于安全;建立弯道半径为300 m,重心高度为1.8 m的仿真工况,基于PLTR交互模型得出的安全车速值与该模型得到的安全车速值进行对比,计算误差从通用模型的18.4%降低到0.3%.  相似文献   

5.
为探讨挡风墙对列车横向气动性能的影响,基于可压缩粘性流体Navier-Stokes方程和k-两方程湍流模型,采用有限体积法,计算了列车在直线和不同半径曲线线路上运行时,不同挡风墙高度和距离的275种工况下列车侧向力和侧翻力矩,获得了最佳挡风墙高度和距离.研究结果表明:在列车速度为200~400 km/h,风速为20~40 m/s的条件下,列车在直线线路上运行的最佳挡风墙高度和距离分别约为1.90和3.90 m;当弯道半径为1 000~7 000 m时,曲线线路最佳挡风墙高度随弯道半径增大线性减小,最佳挡风墙距离与弯道半径关系不大,约4.50 m;风速和列车速度对挡风墙的最佳高度和最优距离影响很小;如果挡风墙高度过低或距离过近,头车和尾车所受侧向力和侧翻力矩方向不同.   相似文献   

6.
影响路面附着性能的因素很多,但寒冷地区路面附着系数的主要因素为路面状况,首先对寒冷地区进行界定,然后进行了冰雪路面类型划分,在确定路面附着系数调查路面的基础上进行了测试车法和制动距离法的寒冷地区路面附着系数调查,对结果进行了相应的分析。  相似文献   

7.
为研究车辆在道路弯道上的跟驰特性及稳定条件,在经典OV模型的基础上,综合考虑路面摩擦、弯道半径和超高等因素的影响,结合弯道力学特性建立弯道OV模型。基于弯道路段车辆跟驰扰动原理,采用傅里叶级数收敛对模型线性稳定性进行分析,得到了弯道跟驰模型的扰动稳定性条件。依据敏感性系数影响因素,绘制了不同弯道弧度的弯道交通流稳定区域曲线图。为验证弯道跟驰模型的有效性,对模型进行计算机模拟和路测实验验证,结果表明:在相同初始密度条件下,弯道车流的稳定性随着弯道弧度的增大而逐渐降低。  相似文献   

8.
通过重型车辆弯道行驶稳定性进行研究,构建基于车路协同的侧翻预警方案,以汽车不发生侧翻为指标给出弯道临界车速计算方法,设计一种基于STC89C52单片机的侧翻预警系统来实时对将要发生的侧翻进行预报,满足实时性和准确性要求,提醒驾驶员错误操作,以免再次发生侧翻危险。  相似文献   

9.
冬季在冰雪路面上行车时,路面附着系数非常低,容易发生制动跑偏、甩尾、侧滑、侧翻、制动距离加长,对行车安全极为不利.因此,驾驶员朋友在冰雪路面行车时须做到"九防".  相似文献   

10.
分析了汽车制动过程前、后轮受力状况,建立了汽车制动距离与路面附着系数的数学模型。在冰雪路面和使用融雪剂路面上进行了制动试验,应用MATLAB软件仿真计算了汽车在不同制动初速度下的制动距离。试验结果表明:在冰雪路面上,当汽车制动初速度分别为10.8、24.4、31.4km.h-1时,制动距离分别为2.959、18.378、26.264m;在使用融雪剂路面上,当汽车制动初速度分别为11.0、22.9、31.0km.h-1时,制动距离分别为2.430、13.766、18.860m。使用融雪剂后,附着系数明显提高,测试制动距离减小了25%~28%,仿真计算制动距离减小了约30%,两者接近,因此,计算模型可靠。  相似文献   

11.
四轮独立驱动电动汽车驱动防滑实车试验   总被引:1,自引:1,他引:0  
针对四轮独立驱动电动汽车的特点,根据汽车驱动防滑(ASR)系统开发的需要,结合试验实例提供了一套用于四轮独立驱动电动汽车驱动防滑实车道路试验的具体方案,主要包括试验路面选择、附着系数测量等关键环节和低附着系数路面加速、由高附着系数路面驶向低附着系数路面、对开路面加速3种典型工况的试验,并说明了按照该方案进行试验时如何分析试验结果,如何评价防滑控制效果。  相似文献   

12.
部分滑水对路面附着系数的影响   总被引:10,自引:0,他引:10  
根据能量守恒原理,利用作用在轮胎上的动水压力计算式,通过有限元计算,分析了由于部分滑水而导致的附着系数的降低状况,得到了附着系数与水膜厚度、行车速度的关系式。计算结果表明,如果水膜覆盖在路面上,那么汽车行驶时不可避免地要产生部分滑水现象,轮胎与路面间的附着系数和干燥状态相比,要下降很多。汽车在低速行驶时,水膜厚度对附着系数的影响较大;而在高速行驶时,则速度的影响较大。  相似文献   

13.
为了改善由电子感应控制汽车制动系统的性能,研究了汽车感应制动模糊自整定PID参数控制的方法.采用一阶延迟模型近似的曲线最小二乘拟合方法和最优PID控制器经验公式,依据单一路面下汽车感应控制的制动控制效果,确定PID的3个参数初值,设计了模糊PID参数调节器,并在单一路面和变化路面上,使用Matlab/Simulink软件,对模糊自整定PID参数控制的汽车电子感应制动系统进行仿真.结果表明:估计的纵向附着系数与设定的理想附着系数之间误差较小,当制动初速度为160 km/h时,在单一路面上,误差为-0.71~0.14,制动距离为114.5 m,制动时间为5.28 s;在变化路面上,误差为-0.71~0.15,制动距离为128.61 m,制动时间为7.625 s.  相似文献   

14.
采用虚拟道路行驶仿真方法,在具有不同路宽的弯道上,进行了小客车行驶试验,分析了通道宽度与不同的弯道半径、转角相组合时其变化对行驶轨迹和速度的影响.研究结果表明:当弯道转角在20°~50°时,通道变宽能使轨迹半径和速度明显地、近乎线性地增加,其中受影响最大的是转角为20°、半径低于200 m的弯道.当通道宽度从2 m增加...  相似文献   

15.
为研究山区弯道景观对行车安全的影响,构建了仿真流程,研究了车辆横向滑移事故判断方法、驾驶员前方视野范围内障碍物或车辆产生方法、驾驶员视距计算及仿真车辆安全状态判断方法;用VB语言编写仿真程序,仿真分析了不同车速、弯道半径、景观位置对车辆运行安全性的影响.研究结果表明;设计车速为60 km/h且景观至路边距离相同时,大半径弯道较小半径弯道的危险概率减少约58%;曲率半径相同时,较高设计车速的道路景观对行车影响较小,中半径弯道设计车速为80 km/h较60 km/h的危险概率减少约33%.  相似文献   

16.
通过自行开发的三轴加速度仪对某山区高速公路的八条隧道的不同位置的路面抗滑性能进行测定,分析了不同路面结构和纵坡下的隧道路面抗滑性能的变化规律.随后,采用汽车动力学仿真技术对附着系数变化下的隧道行车安全进行分析,揭示了事故产生的主要原因.最后,结合国内外隧道路面铺装技术对隧道路面的结构设计提出合理建议.  相似文献   

17.
隧道路面抗滑性能测定及其对行车安全影响分析   总被引:4,自引:0,他引:4  
通过自行开发的三轴加速度仪对某山区高速公路的八条隧道的不同位置的路面抗滑性能进行测定,分析了不同路面结构和纵坡下的隧道路面抗滑性能的变化规律.随后,采用汽车动力学仿真技术对附着系数变化下的隧道行车安全进行分析,揭示了事故产生的主要原因.最后,结合国内外隧道路面铺装技术对隧道路面的结构设计提出合理建议.  相似文献   

18.
差动制动对汽车制动稳定性的影响   总被引:1,自引:0,他引:1  
为了提高汽车制动的安全性,对差动制动的力学特性进行了分析,运用ADAMS/Car软件建立了汽车各子系统动力学模型,通过对主要子系统进行相应的设置,建立了整车动力学仿真模型,进行了直线制动及转弯制动稳定性仿真分析,研究了差动制动对制动稳定性的影响。仿真结果表明:差动制动方式可以减小汽车转弯制动时的质心侧偏角,提高汽车的制动稳定性,但汽车质量对于制动稳定性影响较大,因此,应用差动制动时应注意制动力分配方式,并考虑质量变化的影响。  相似文献   

19.
基于ADAMS的车辆极限越障性能研究   总被引:1,自引:0,他引:1  
利用ADAMS软件建立四桥独立悬架车辆的模型,来模拟跨越台阶状障碍,并结合Simulink对其运动进行综合交互仿真。通过仿真,得出不同附着系数下车辆能爬上的最大高度,并与理论计算的结果进行对比分析,证实了该方法的实用性及可行性,为四桥独立悬架车辆汽车的通过性开发设计提供了一种有效的现代化手段。  相似文献   

20.
根据山区圆曲线路段的特点,分析了轮胎的受力和变形情况,建立了半挂汽车列车与山区圆曲线路段的耦合动力学模型。以牵引车和半挂车的轮胎侧偏角和折叠角为指标,运用提出的动力学仿真法分析了不同车速下圆曲线路段半径、超高、滑动附着系数对半挂汽车列车行驶安全性的影响,并与运行速度法和理论极限速度法的计算结果进行对比。仿真结果表明:当圆曲线半径为125m,路面超高为2%,滑动附着系数分别为0.20、0.35、0.50、0.80时,运用动力学仿真法求得的临界安全车速分别为20、35、55、72km·h-1,运用运行速度法求得的临界安全车速均为50km·h-1,运用理论极限速度法求得的临界安全车速分别为18、20、25、30km·h-1;当圆曲线半径为250m,滑动附着系数为0.35,超高分别为0、2%、4%、6%时,运用动力学仿真法求得的临界安全车速分别为35、38、25、20km·h-1,运用运行速度法求得的临界安全车速均为60km·h-1,运用理论极限速度法求得的临界安全车速分别为30、31、32、33km·h-1;当路面超高为6%,滑动附着系数为0.50,圆曲线半径分别为125、250、400、650m时,运用动力学仿真法求得的临界安全车速分别为58、62、70、72km·h-1,运用运行速度法求得的临界安全车速分别为50、60、68、71km·h-1,运用理论极限速度法求得的临界安全车速分别为28、37、48、60km·h-1。可见,提出的动力学仿真法考虑了车辆悬架动力学特性、天气与路面条件,可以准确描述半挂汽车列车的运行状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号