首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 676 毫秒
1.
为解决气液环簧组合式缓冲器呈现非对称拉压动态特性问题,构建了气液环簧组合式缓冲器动力学模型,基于MATLAB/Simulink软件编制了考虑不同吸能元件特性的车辆冲击动力学模型程序,研究了两辆单车冲击及两列动车组冲击的动态特性。研究结果表明:组合式缓冲器动力学模型既能有效地模拟拉伸状态下环簧缓冲器的线性加载特性,又能较好地模拟压缩状态下气液缓冲器随冲击速度变化的非线性加载动态特性,即组合式缓冲器动力学模型体现了明显的非对称拉压特性;低速与中高速冲击过程中,组合式缓冲器动力学模型及车辆冲击模型可依次完整有效地模拟缓冲器-压溃管-防爬器-车体结构变形产生的缓冲吸能动态过程及磁滞拉压特性曲线;列车冲击速度为5 km·h-1时,最大车钩力及组合式缓冲器最大行程均小于缓冲器阻抗力和行程限值,其压缩加载特性曲线仅呈现出气液缓冲器的加载特性;冲击速度为20 km·h-1时,最大车钩力为2 900 kN,最大行程为534 mm,防爬器已经触发,其压缩加载特性曲线呈现出了气液缓冲器-压溃管-防爬器组成的连续力学特性,此时车体结构未发生破坏;冲击速度达到25~30 km·h-1时,列车开始发生结构破坏,车钩力陡升;全自动车钩与半永久车钩参数选型能够满足冲击速度20 km·h-1以内的列车车体结构安全性。   相似文献   

2.
针对用于高速公路临时定点作业和机动养护作业的碰撞缓冲安全装置。研究高速公路移动养护车辆的碰撞特性。碰撞主要的结构吸能是碰撞缓冲安全装置和车身的保险杠。文章基于非线性ANSYS/LS-DYNA有限元软件,进行模型的吸能部件的碰撞力学分析,提出碰撞缓冲安全装置的适用场合。研究结果表明,复合结构的缓冲装置具有较高的吸能率,该系统通过塑性变形能来消耗冲击能量,当回弹发生后整个吸能过程结束。  相似文献   

3.
为研究地铁列车在碰撞过程中的能量分配特性,以某6辆编组的地铁列车为平台,依据车钩缓冲装置和防爬器的吸能特性,进行列车纵向动力学仿真计算,结果显示:在列车碰撞的过程中,各个界面的吸能情况并不均衡.对此,对比了车钩系统在不同配置条件下的吸能特性,寻找列车碰撞过程中各界面的吸能规律,并进行一定的参数优化,使列车在满足车辆连挂和低速碰撞的要求条件下,可最大化地利用各界面的吸能容量,其配置结果对列车碰撞能量管理和车体结构强度的设计都有一定的指导价值.  相似文献   

4.
为了揭示车辆参数对列车碰撞爬车行为的影响规律,首先基于车轨耦合的基本思路,建立车辆模型和移动轨道模型,用非线性轮轨接触模型耦合车辆模型和移动轨道模型;非线性钩缓装置模型用于连接相邻的两个车辆模型;然后通过模拟两同型列车低速正面碰撞,获得了不同参数情况下车辆和轨道的动态响应;最后用车轮抬升量作为车辆碰撞爬车指标,分析了车轮抬升量对碰撞速度、车体质心高度和二系垂向刚度的灵敏度和相对灵敏度. 结果表明:在其他条件不变的情况下,当碰撞速度增大至27 km/h时,车轮抬升量陡增至36.5 mm;质心高度增大20%时,车轮抬升量增加41%;二系垂向刚度增大20%时,车轮抬升量减小16.6%;车轮抬升量随碰撞速度和质心高度的增大而增大,而随着二系垂向刚度的增大而减小;车轮抬升量对碰撞速度的灵敏度是非线性的;质心高度和二系垂向刚度的相对灵敏度分别为205%和?83%.   相似文献   

5.
针对列车碰撞过程中两车之间的运动状态,设置了车钩连接和分离两大状态,将碰撞过程中钩缓系统的运动细化为弹性压缩、塑形压缩、弹性伸长和车钩力为0的4个子状态,运用simulink/stateflow建立仿真模型。基于此,建立了两列单节车碰撞的Matlab/simulink仿真模型,观察其在不同撞击速度下的缓冲器特性。分析结果表明,所建立的车钩缓冲器模型能够较好地反映车辆碰撞过程中车钩的实际状态。  相似文献   

6.
为了研究某机车车体结构的耐碰撞性能,基于仿真软件的工程应用,建立了详细有效的机车车辆车体结构非线性动力学有限元模型.其中,重点对机车车钩缓冲装置和吸能装置进行了详细的有限元模拟.并以装有车钩缓冲装置和吸能装置的机车以10 km/h速度撞击刚性墙为例,验证了该机车的耐碰撞性能.结果表明,该机车在碰撞过程中,车钩缓冲装置和吸能装置很好的发挥了其能量吸收作用,机车车体结构没有发生塑性变形.  相似文献   

7.
为了研究车辆冲击对车辆运行安全性的影响,依据缓冲器计算理论,利用Simulink软件建立了货车缓冲器动力学修正模型;根据车辆系统动力学理论及车钩计算模型,利用UM软件建立了装用K6转向架的C80货车完整自由度车辆模型.将上述模型联合仿真,实现了车辆冲击的数值模拟.计算结果表明:两组车之间的冲击比一辆车与一组车间的冲击危害更大;车钩和从板质量使车辆产生高频小幅的车钩力;悬挂因素导致完整自由度车辆冲击模型的车钩力比单自由度车辆冲击模型小21.7%;车辆在纵向、横向和垂向存在耦合关系,轮轨垂向力随着冲击质量以及重心高度的增加而增大,轮轨横向力随着车端纵向压力的增加和曲线半径的减小而增大.   相似文献   

8.
列车碰撞仿真中钩缓装置模拟方法   总被引:5,自引:0,他引:5       下载免费PDF全文
为了研究列车碰撞过程中的钩缓装置行为,提出了一种基于LS-DYNA离散梁单元模拟钩缓特性的仿真方法.以某6节编组的城市地铁列车36 km/h对撞工况为例,对钩缓装置的加载、卸载以及在极限载荷下的失效脱落等现象进行模拟,并计算钩缓装置对列车碰撞工况能量吸收的贡献程度.结果表明:该方法能够模拟碰撞时列车钩缓装置的力学特性以及车钩的失效和脱落现象,并且能得到连挂列车各位置钩缓装置的输出特性、能量吸收等指标;两列车对撞后,钩缓装置在碰撞过程中吸收能量占总能量的27%.   相似文献   

9.
基于摩擦缓冲器动力学理论、车钩双向接触方法与车体摇枕载荷传递模型, 构建了车辆冲击三维动力学模型, 仿真了不同冲击速度与不同空重车状态的货车冲击, 分析了车辆冲击动态特性及其对摇枕横向载荷的影响, 并通过试验对仿真结果进行了验证。分析结果表明: 利用车辆冲击三维动力学模型顺利实现了车辆冲击时缓冲器动态特性、车钩连挂动态特性与摇枕横向载荷的仿真计算, 并获得了与冲击试验较为吻合的结果, 其中车钩力误差基本小于10%, 摇枕横向载荷误差基本小于25%;空车质量较小, 在冲击作用下车钩和从板姿态变化大, 因此, 重车冲击空车时车钩力动态曲线振荡特性较重车冲击重车更为明显, 甚至局部出现尖峰; 相对于车钩接触模型与力学传递特性, 摩擦缓冲器模型存在黏滞特性, 导致重车冲击重车和重车冲击空车下车钩接触力较缓冲器阻抗力分别小24%和31%;车钩力和摇枕横向载荷随着冲击速度的提高而逐渐增大, 且时间变化历程与最大峰值出现的时间基本一致, 相同速度下重车冲击重车的车钩力要大于重车冲击空车的车钩力, 在3、5、8km·h-1速度下分别大57%、25%和37%, 而产生的摇枕横向载荷刚好相反, 3种速度下分别小42%、53%和47%, 因此, 重车与空车调车连挂过程更容易造成转向架摇枕横向载荷过大, 应严格控制其连挂速度。   相似文献   

10.
针对传统有限元分析方法对机车车辆结构耐撞性计算效率低的问题,在已有仿真分析数据基础上,引入机器学习方法,对车辆关键结构的耐撞性以及碰撞安全性进行分析预测. 首先,建立基于神经网络的数据挖掘模型,在此基础上构建车辆关键结构的碰撞响应预测方法;其次,通过试验验证了防爬吸能装置有限元模型的正确性,以此模型为基础获得不同壁厚防爬吸能装置的碰撞响应仿真数据;然后,以吸能装置壁厚作为模型输入,不同壁厚所对应的位移、速度、界面力和内能等碰撞响应作为模型输出,将有限元仿真数据用于模型训练,优化后的数据挖掘模型的拟合优度在0.922以上;最后,为验证模型预测的准确性,将碰撞数学模型的预测结果与有限元仿真结果进行对比,速度、位移、界面力和内能的平均相对误差分别为7.10%、4.51%、6.20%和2.50%. 研究结果表明:基于神经网络构建的数据挖掘模型在保证精度的情况下,能很好地反映防爬吸能装置的碰撞特性,大幅降低了计算时间,提高了计算效率.   相似文献   

11.
为了探明车钩箱中心线相对车底架中心线存在横向偏差及对制动时机车动态性能的影响规律,测量了八轴机车底架几何参数.测试结果发现,车钩箱偏离车底架中心线范围约5~10 mm.根据测量结果,考虑国内重载机车常用的车钩缓冲器装置的结构特点,建立了具有时变弧面接触特性的钩缓动力学模型和由2台八轴机车组成的列车动力学模型.在此基础上分析了不同横向偏差的车钩摆角、车体横向错位以及机车行车安全性.研究结果表明:在厂线试验条件下,若车钩箱偏离中心线距离越大,制动后车钩摆角与车体横向错位增大,行车安全性越差.为保证行车安全性,车钩箱偏离距离应不超过9 mm.   相似文献   

12.
重载组合列车机车车钩稳定控制试验   总被引:3,自引:1,他引:2  
为控制重载组合机车车钩的动态稳定性,根据重载机车车钩稳定性的工作原理与车体和乍钩的儿何关系,推导了机车车钩最大自由摆角的计算方法.以某型机车装用DFC-E100型钩缓装置在大秦线牵引重载列车为例,通过改变列车的牵引重量、编组方式和制动方式,不断加大作用于机车的纵向力,实测被试机车的脱轨系数、轮重减载率和轮轴横向力等安全性参数,试验研究列车中部机车车钩横向摆动对机车运行安全性的影响.结果表明:在压钩力作用下,机车车钩摆角随车钩纵向力的增大而增大;车钩最大自由摆角增大,机车的安全性参数及机车脱轨的风险则随之增加,考虑工程误差,车钩最大自由摆角应为2.5°~3.5°.  相似文献   

13.
为解决长大列车与连续长弹性轨道的同步仿真问题,以列车通过曲线轨道为例,采用重载列车-轨道耦合动力学模型,分析了压钩力作用下轨道结构与30 t轴重列车的动态特性,提出了长大重载列车与轨道动态相互作用仿真时模型的简化求解方法.该方法将庞大的列车/轨道耦合振动系统以有限数目的三维车辆模型代替,并考虑其轨下基础结构弹性,从而极大缩减系统运动自由度.研究结果表明:列车可简化为单质点车辆模型和三维车辆模型混合的短编组列车,当模型中只包含一个三维车辆模型,且其前、后车辆均以单质点模拟时,计算结果偏低;列车承受2 200 kN压钩力并通过400 m半径曲线线路时,货车最大轮轨横向力和垂向力较多节三维货车编组模型的计算结果分别低估了24%和4%,钢轨横向、垂向位移则被低估了20%和8%;端部车辆采用单质点模型、中部采用三维车辆模型的车辆数至少为3时,才能较为准确地反映中间目标车辆处轮轨作用力和其下部轨道结构的动态特性.   相似文献   

14.
本文利用计算机模拟方法,根据摩擦学原理,分析、建立了2号、 MARK50缓冲器的动态计算模型’,分析了缓冲器在落接、列车运行、 调车工况中的动态特性,并与试验结果进行了比较。   相似文献   

15.
研究了重载列车缓冲器的特性,分析了弹性胶泥型缓冲器和摩擦胶泥型缓冲器的结构及工作原理,以HXD1型机车、13A型车钩以及2种类型缓冲器为基础,建立了4节编组机车万吨级牵引列车动力学模型,研究了2种缓冲器静态与动态阻抗特性对重载列车相关动力学性能的影响.仿真结果表明:重载列车在长大下坡道进行循环制动时,摩擦胶泥型缓冲器无...  相似文献   

16.
磁浮列车静悬浮车轨耦合振动对比分析   总被引:1,自引:1,他引:0  
为研究二系悬挂中置与端置的两种三悬浮架低速磁浮列车的车轨耦合振动特性,依据牛顿第二定律建立了其垂向车轨耦合动力学模型. 首先通过动力学方程分别分析了两种磁浮列车车体和悬浮架之间的耦合关系,然后研究了两种磁浮列车悬浮架均存在0.09° 的初始角位移时的动力学特性,最后研究了两种磁浮列车中二系悬挂对悬浮架作功的差异. 研究结果表明:与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,车体与悬浮架之间的耦合关系更少;当两种磁浮列车悬浮架均存在0.09° 的初始角位移时,采用二系悬挂中置的磁浮列车与采用二系悬挂端置的磁浮列车相比,前者具有更小的车体位移、车体垂向振动加速度、轨道梁振动位移和悬浮间隙波动;以上4个参数前者最大值分别为0.005 mm、0.004 m/s2、0.004 mm和0.005 mm;而后者最大值分别为0.023 mm、0.02 m/s2、0.021 mm和0.02 mm;与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,其二系空气弹簧对悬浮架作功更小,仅为前者的50%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号