首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
为探明强震作用下断层上、下盘桥梁桩基动力响应差异,依托海南省海文大桥工程,通过振动台模型试验,研究了0.15g~0.60g地震动强度作用下断层上、下盘桩基的桩身加速度、桩顶相对位移、桩身弯矩响应规律差异与桩基损伤特征。研究结果表明:在不同地震动强度作用下,断层上、下盘桩基的桩顶加速度峰值相差0.291~0.488 m·s-2,桩顶加速度放大系数相差0.067~0.195,原因为断层对两侧岩土体影响范围存在差异与桩周岩土体“非线性”差异;随着地震动强度的增大,断层上、下盘桩基的桩顶相对位移差值逐渐增大,最大差值为0.77 mm;断层上、下盘桩基的弯矩最大值相差5.294~82.932 kN·m,且弯矩最大值均出现在覆盖层软硬土交界面与基岩面附近,原因在于下盘作为稳定盘,受上盘土体挤压作用,对下盘岩土体的振动剪切有一定抑制作用;地震动强度为0.35g时,断层上、下盘桩的最大弯矩均未超过抗弯承载力,满足海文大桥抗震设防烈度Ⅷ度(0.35g)的要求;地震动强度为0.35g~0.45g时,断层上盘桩的基频变化幅度较小,地震动强度为0.50g~0.60g时,断层上盘桩的基频显著降低,在桩顶与承台连接处、软硬土层界面与基岩面附近出现裂缝,说明此时桩基已发生损伤。可见,断层上盘桩基的桩身加速度峰值、桩顶相对位移与桩身弯矩动力响应指标均大于下盘桩基,断层上、下盘桩基动力响应变化规律差异显著,体现出显著的“断层上盘效应”,因此,强震作用下近断层桥梁桩基础抗震设计时,应着重考虑断层上盘桩基础的抗震承载能力。   相似文献   

2.
为了提高位于液化土层桥梁桩基的抗震性能, 基于三向六自由度大型振动台模型试验, 分析了地震波作用下桩顶水平位移、桩身加速度及弯矩等动力响应, 并研究了地震波加载后桩基的损伤。试验结果表明: 在地震波作用下, 随着液化层埋深的增加, 土体液化后产生的侧扩效果逐渐减弱, 因此, 桩顶水平位移峰值逐渐减小, 但是当地震加速度超过0.6g时, 桩顶水平位移峰值不受液化层埋深的影响; 因地震荷载作用下粉细砂土层液化, 桩身加速度在该土层位置明显增大; 上部覆盖层压力作用使土层抗剪强度增大, 因此, 桩顶放大系数随着液化层深度的增加而增大, 且桩顶放大系数在Kobe波作用下最大, 5002波作用下最小, 砂土液化同时造成土层强度降低, 从而使桩身加速度在该土层出现放大效应; 桩身弯矩最大值均出现在液化层和非液化层分界处, 且在相同强度地震波作用下, 桩身弯矩最大值随着液化层埋深的增加呈增大趋势, 当地震加速度从0.30g增大到0.35g后, 桩身弯矩增幅为33.3%, 增幅最大; 不同类型地震波对桩基的破坏程度并无差异, 在加速度0.35g作用下, 桩基基频无变化, 但当地震波强度超过0.40g时, 桩基基频从1.65 Hz突降到0.45 Hz, 因砂土层液化产生侧向位移, 桩身剪切变形, 最终导致桩基损坏。综上所述, 当液化层较浅时, 应重点考虑地震波作用下过大的桩顶水平位移; 在桩基抗震设计时, 必须考虑液化层和非液化层分界处桩基的抗弯能力和液化层埋深的影响。   相似文献   

3.
为研究强震作用下群桩基础抗液化性能优于单桩基础的具体表现形式,依托海南省海文大桥工程,采用振动台模型试验开展单桩、四桩、六桩基础处理液化地基的差异性研究,分析了3种不同工况下饱和粉细砂土层中孔压比、桩身加速度和弯矩时程响应差异及其三者相互关系。研究结果表明:0.35g地震动荷载作用下,3种工况均产生液化现象,饱和粉细砂土层深处的孔压比开始增长时刻及稳定时刻均滞后于浅层;六桩基础完全液化耗时比四桩基础延缓4.41~4.82 s,四桩基础完全液化耗时比单桩基础延缓4.00~4.42 s;随着桩数的增加,同一深度处饱和粉细砂土层中桩身最大加速度及其放大系数均逐渐减小,桩身最大加速度出现时刻逐渐滞后,且随着孔压比的增大,桩身加速度逐渐减小;六桩基础最大弯矩较四桩基础小25.95%~43.50%,四桩基础最大弯矩较单桩基础小28.80%~33.10%,单桩基础最大弯矩出现时刻比四桩基础早1.22~1.27 s,四桩基础较六桩基础提前0.66~0.72 s,且桩身弯矩随孔压比的增大逐渐衰减,说明液化前饱和粉细砂土层具有软化减震作用。可见,六桩基础抗液化性能优于四桩及单桩基础,在液化土层桩基础抗震设计中,可通过群桩基础形式提高其抗液化性能。   相似文献   

4.
选取56条ⅡI类场地近场地震波,采用IDA分析方法,对3个不同墩高的混凝土桥墩进行分析.以桥墩的墩顶位移响应为研究目标进概率特征统计,得出以下结论:对于低周期桥墩,墩顶位移响应及地震波峰值加速度在取双对数的情况下,对于每个地震波峰值加速度,位移响应的对数近似可以看成正态分布,且位移响应对数的均值与地震波峰值加速度的对数呈线性关系,其方差随着地震波峰值加速度的增加呈增大趋势,但并非线性关系.同时,墩的高度也是影响墩顶位移响应离散性的因素之一,墩的高度越大,墩顶位移的离散性也越大.  相似文献   

5.
为研究西昌昔格达组阶梯地形标高突变对地震动响应规律,选取攀钢西昌钒钛钢铁新基地地基工程为背景工程.以2个地基方案为研究对象,用有限元软件构建2个三维地基模型并模拟地震动作用下模型表面3个方向地震动加速度分布.通过分析得出如下结论:阶梯地形标高突变对水平方向加速度放大系数影响甚小,而竖直方向加速度放大系数骤增,但是否随着标高突变量增大而增大,有待进一步研究;从阶梯地形角点处向内侧延伸,竖直方向加速度放大系数又减小;竖直方向加速度放大系数随着输入地震动强度增大而减小;输入地震波强度越大,标高突变引起竖直方向加速度峰值增大越显著.  相似文献   

6.
采用有限元分析软件SAP2000建立了某整体式斜交桥的三维结构模型,通过离散非线性弹簧单元模拟桥台-台后土以及H型钢桩-桩周土的土-结构相互作用,通过一系列双向地震作用下的非线性时程分析,研究了桩的朝向、桩周土刚度及桩头转动刚度对整体式斜交桥中H型钢桩地震响应的影响规律。研究结果表明:双向地震作用下,H型钢桩的横桥向位移显著大于纵桥向,且受桩朝向的影响更为明显,强、弱轴弯矩均呈正反双向分布,屈服面函数最大值一般位于桩顶,另一峰值则位于桩身2~4 m埋深处;钢桩绕强轴弯曲布置时,桩顶纵桥向位移相比绕弱轴弯曲时降低18.2%,但横桥向位移增大47.7%,桩顶处绕强轴弯矩增加约3.9倍,桩身反向强轴弯矩峰值降低67.0%,桩顶处绕弱轴弯矩基本不变,桩身反向弱轴弯矩峰值增加约1.0倍;随着桩周土刚度的降低,桩顶纵、横桥向位移增大,桩顶屈服面函数值降低,而桩身屈服面函数峰值增加,桩身更不易保持弹性;当桩头采用柔性连接时,桩顶纵、横桥向位移均增大,桩顶屈服面函数值降低,有利于保护桩头,而桩身屈服面函数峰值增加,当桩头转动刚度过低时甚至可能大于桩顶刚度,导致桩身在罕遇地震作用下先进入塑性。   相似文献   

7.
采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。   相似文献   

8.
为了研究含倾斜夹层场地在地震作用下的动力响应及为可能的场地加固提供指导,基于大型振动台模型试验,研究了含倾斜夹层场地在El Centro地震波作用下的加速度、应变及位移响应特征,同时通过频谱分析讨论了夹层对场地稳定性的影响,并用拟静力分析得到场地的启动临界加速度及场地的稳定系数. 试验结果表明:夹层对于加速度峰值存在明显的削弱效果,加载地震波峰值越大,削弱程度越大,同时基岩中加速度放大系数呈现“量级饱和”特征;夹层处应变峰值最大,当加载地震波峰值大于0.33g时,场地平台与斜坡拐角下基覆中存在另一峰值,应变形状呈现“W”形;夹层对20 Hz附近频段的傅里叶幅值有一定的削弱作用,同一土层反应谱卓越周期基本一致,不同土层反应谱差别较大,夹层处(0.31 s)卓越周期大于基岩(0.19 s)与基覆处(0.21 s);拟静力分析显示0.33g时场地的稳定系数为3.16,强风化带启动的临界加速度为1.42g.   相似文献   

9.
考虑了实际地层、桩-土动力相互作用的影响,采用瞬态动力时程分析法对不同横排间距直桩码头的水平地震荷载响应进行了分析;研究了码头结构在真实地震记录加速度作用下的位移、加速度、最大等效应力、剪应力以及桩的等效应力、弯矩变化规律.计算表明,横排间距平均每增大2 m:码头上部结构最大等效应力增大约9%~12%,码头上部结构最大剪应力增大约12%~15%,码头桩基的最大等效应力增大约8%~9%,码头桩内的弯矩增大约10%.随着桩间距的增加码头抗扭性能增加了,因此上部结构内力增量大于桩内内力的增量,而且整体码头结构跨间距增加到11 m时桩内等效应力接近屈服强度,但未出现应力集中屈服区,桩顶铰接后大大减小了地震的动力危害,可以把横间距增加到11 m.横排间距增大会使面板上产生较大剪应力,最大剪应力发生在面板与纵横梁形成的交角处,应对其采用局部加固的优化设计.研究成果可为深海码头结构的设计提供参考.  相似文献   

10.
苏巴什东寺佛塔的地震动力响应   总被引:2,自引:1,他引:1  
为更好地保护土遗址,用FLAC3D软件对苏巴什佛寺东寺佛塔进行了地震响应分析,包括佛塔位移、应力以及地震波的加速度放大系数和傅立叶谱.结果表明:在地震荷载作用下,该佛塔产生了一定永久位移,佛塔内部产生了拉应力集中;地面以下地震加速度存在弱化现象,地面以上地震加速度存在放大现象,地震加速度放大系数随距地表高度的增大而增大...  相似文献   

11.
利用SAP2000建立了某整体式钢桥的三维有限元模型, 采用非线性弹簧单元和阻尼单元模拟地震作用下桥台-土和桩-土之间的相互作用, 分析了桥梁的模态、非线性时程与相应的参数, 研究了考虑土-结构非线性相互作用的整体式钢桥动力特性和抗震性能, 以及整体式桥台系统的主要设计参数对此类桥梁动力特性和抗震性能的影响。研究结果表明: 压实台后填土、增加桥台高厚比、增加桩周土刚度将使桥梁结构纵向主频增加约6.5%~16.0%, 而H型钢桩的朝向影响仅为1.6%左右; 结构地震响应随着桥台高厚比增加而明显降低, 桥台高厚比为1.44时, 桩顶截面处于塑性阶段, 而高厚比增大到3.15和3.85后, 桩保持弹性状态; 随着台后土密实度的减小, 结构的地震响应明显增大, 增幅大都在40%以上; 桩的朝向由绕强轴弯曲调整为绕弱轴弯曲时, 桩的最大弯矩减小, 但弯曲应力增大, 材料由弹性进入塑性阶段; 随着桩周土刚度增大, 桥梁位移响应明显减小, 桩顶、台顶最大位移及墩底弯矩减小50%左右, 但是桩顶弯矩增大40%以上, 桩的朝向对此几乎无影响; 在满足设计要求及合理范围内, 建议采用高厚比较大与柔性较高的桥台, 并压实台后填土以减小整体桥结构的地震响应, 桥台基础采用H型钢桩时, 建议将其朝向调整为绕强轴弯曲以减小桩、桥台和墩柱的最大弯曲应力与位移。   相似文献   

12.
采用ANSYS结构分析软件建立三维有限元实体模型,计算了地震作用下桩-土动力相互作用体系的动力反应.分析了体系的加速度反应、位移反应、桩身应变、桩身挠度、桩身弯矩、桩身剪力和桩土间接触压力等方面,并探讨了桩土刚度比、上部荷载等参数对桩-土相互作用体系的影响.  相似文献   

13.
为了研究不同地震动强度作用下高墩桥梁的碰撞可靠度的不同,在频域范围内提出了一种以虚拟激励法为基础的动力可靠度计算方法,依托某高墩大跨度桥梁为工程背景,分析了高墩桥梁在不同地震强度下的碰撞可靠度.选择反应谱的水平加速度作为地震强度衡量指标,且将不同强度指标的反应谱转化为相应的功率谱;利用虚拟激励法求解随机振动方程,得到结构响应的均值与均方差值,再基于Davenport理论获得结构峰值响应的期望和标准差;根据首次超越理论计算梁体碰撞可靠度.研究表明:地震动加速度小于0.22g时,梁体之间不发生碰撞,动力可靠度为1.0;加速度大于0.22g时,梁体碰撞动力可靠度下降明显,即在强震作用下,梁体发生碰撞.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号