首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 266 毫秒
1.
采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。   相似文献   

2.
本文计入整体式板桥安全带刚度对弯矩的影响,按带边梁的矩形板分析正交整体式板桥在汽车荷载作用下的弯矩。通过算例分析对比表明:安全带的刚度使板中心纵桥向弯矩减小,横桥向弯矩增大,也使板边纵桥向弯矩减小,而横桥向弯矩变化不大。  相似文献   

3.
利用SAP2000建立了某整体式钢桥的三维有限元模型, 采用非线性弹簧单元和阻尼单元模拟地震作用下桥台-土和桩-土之间的相互作用, 分析了桥梁的模态、非线性时程与相应的参数, 研究了考虑土-结构非线性相互作用的整体式钢桥动力特性和抗震性能, 以及整体式桥台系统的主要设计参数对此类桥梁动力特性和抗震性能的影响。研究结果表明: 压实台后填土、增加桥台高厚比、增加桩周土刚度将使桥梁结构纵向主频增加约6.5%~16.0%, 而H型钢桩的朝向影响仅为1.6%左右; 结构地震响应随着桥台高厚比增加而明显降低, 桥台高厚比为1.44时, 桩顶截面处于塑性阶段, 而高厚比增大到3.15和3.85后, 桩保持弹性状态; 随着台后土密实度的减小, 结构的地震响应明显增大, 增幅大都在40%以上; 桩的朝向由绕强轴弯曲调整为绕弱轴弯曲时, 桩的最大弯矩减小, 但弯曲应力增大, 材料由弹性进入塑性阶段; 随着桩周土刚度增大, 桥梁位移响应明显减小, 桩顶、台顶最大位移及墩底弯矩减小50%左右, 但是桩顶弯矩增大40%以上, 桩的朝向对此几乎无影响; 在满足设计要求及合理范围内, 建议采用高厚比较大与柔性较高的桥台, 并压实台后填土以减小整体桥结构的地震响应, 桥台基础采用H型钢桩时, 建议将其朝向调整为绕强轴弯曲以减小桩、桥台和墩柱的最大弯曲应力与位移。   相似文献   

4.
双排抗滑桩承载机理及土拱效应模型试验研究   总被引:2,自引:0,他引:2  
设计并完成小比例边坡双排抗滑桩室内模型试验,通过在模型桩桩身粘贴应变片及在部分桩周土体内埋置土压力盒,量测加载过程中桩身的内力与桩周土体抗力的分布情况,进一步分析探讨不同推力荷载条件下双排抗滑桩结构的承载机理和内力位移特性。结果表明:桩顶水平位移与推力的变化曲线呈凹曲线状,随着推力的增加,水平位移加速增大;前后排桩的弯矩分布曲线呈S交变性,且桩顶弯矩值不再为零,随着水平推力荷载的增加,桩顶弯矩越来越大,桩身的正负弯矩绝对值也越来越大;双排抗滑桩在抵抗水平推力荷载时,桩间会产生明显土拱效应,出现弧形的裂缝。这些结论可为双排抗滑桩的理论研究与工程设计提供有益参考。  相似文献   

5.
洛河特大桥抗震性能计算   总被引:11,自引:1,他引:11  
为了准确计算洛河特大桥的地震反应,基于大跨径桥梁地震反应分析方法,建立了考虑桩-土相互作用的全桩模型,将波速大于500 m.s-1处的桩截去,并考虑桩-土相互作用的截桩模型与考虑各桥墩处场地土不同所产生的多点激励以及地震波有限波速传播所引起行波效应的大质量模型,采用大型通用有限元程序ANSYS进行桥梁三维地震动态时程分析。结果表明,高墩的位移响应与轴力大;墩越矮,横桥向剪力、顺桥向剪力以及顺桥向弯矩越大;截桩模型与全桩模型的位移响应在横桥向与顺桥向的最大偏差分别为7.4%与8.2%,故截桩模型可用作长桩桥梁时程的简化分析;大质量模型受质量块的大小以及桥墩高差的影响较大,跨径小于160 m以及桥长小于660 m的连续刚构桥对行波效应不敏感,因此,在高墩大跨径连续刚构桥抗震设计时,应考虑桩-土相互作用,并加强高墩的延性设计与矮墩的截面抗力设计。  相似文献   

6.
以H型钢-RC阶梯桩模型试验为背景,进行了2根H型钢-RC阶梯桩(HS-RC-0.25、HS-RC-0.50)及1根H型钢桩(HS)的低周往复荷载拟静力试验;在桩顶施加水平位移荷载,埋设应变片与土压力计,采用特殊设计的桩身水平变位测试方法,得到了H型钢-RC阶梯桩桩身破坏特点、沿桩深方向的桩身水平位移与应变、骨架曲线和滞回性能曲线;利用OpenSEES对比分析了桩顶自由与固定条件下阶梯桩桩顶水平变位能力,得到了阶梯桩水平承载力折减系数与转化系数,对比了利用折减系数得到的模型桩水平承载力计算值与试验值。试验结果表明:H型钢桩的桩顶弹性变形为2~25 mm,其水平变形能力强,承载能力好,加载全过程滞回环饱满,耗能效果好;刚度比对阶梯桩的破坏模式无显著影响,阶梯桩的上段钢桩均无明显的屈曲破坏,变截面处混凝土严重剥落且破坏位置相同;随刚度比增大,阶梯桩-土体系屈服位移及屈服荷载均提高,HS-RC-0.25较HS-RC-0.50桩顶屈服位移减小了29.15%,桩身应变突变减小;阶梯桩的滞回环在加载初期因为滑移表现为捏拢状,而在加载后期过渡为饱满的梭形,耗能效果良好,HS-RC-0.50加载全过程的耗能比HS-RC-0.25多25.4%,具有较好的水平变形能力;对比试验值,HS-RC-0.25的计算误差为-9.68%,HS-RC-0.50的计算误差为-2.47%。可见,HS-RC阶梯桩能满足整体桥桩基的水平变形需求,利用折减系数能较好地计算阶梯桩的水平承载力特征值。   相似文献   

7.
依托铺前大桥实体工程, 基于人工质量模型和桩-土惯性相互作用机理, 通过振动台模型试验, 选用叠层剪切式模型箱, 模拟了自由场在地震作用下的振动反应, 分析了0.15g ~0.60g (g为重力加速度) 地震动强度下大直径桥梁嵌岩桩基础加速度、相对位移、弯矩等响应特性和损伤情况等。研究结果表明: 桩基础加速度峰值从桩底至桩顶呈增大趋势, 加速度放大系数随地震动强度的增大逐渐减小, 输入地震波为0.55g 时, 桩顶加速度放大系数趋于稳定值1.34;桩顶加速度时程响应频率低于桩底加速度时程响应频率, 上部覆盖层对地震波的放大作用和滤波效应明显; 随着地震动强度的增大, 桩顶相对位移峰值近似呈线性增大, 在0.15g ~0.60g 地震动强度下, 桩顶相对位移峰值变化范围为1.97~6.73mm; 桩基础弯矩沿桩长呈“3”字形变化, 上部软硬土层分界处和基岩面附近弯矩达到峰值, 并随地震动强度的增大而增大, 地震动强度为0.50g 时达190.9kN·m, 超过桩身抗弯承载力; 桩基础基频随地震动强度的增大呈整体降低趋势, 在0.50g 地震动强度下, 其基频较0.35g 地震动强度下低50.1%, 桩基础产生损伤; 桩顶与承台连接处、上部覆盖软硬土层界面和基岩面附近桩身在地震作用下易产生裂缝, 桥梁桩基础抗震设计时应着重考虑。   相似文献   

8.
为了提高位于液化土层桥梁桩基的抗震性能, 基于三向六自由度大型振动台模型试验, 分析了地震波作用下桩顶水平位移、桩身加速度及弯矩等动力响应, 并研究了地震波加载后桩基的损伤。试验结果表明: 在地震波作用下, 随着液化层埋深的增加, 土体液化后产生的侧扩效果逐渐减弱, 因此, 桩顶水平位移峰值逐渐减小, 但是当地震加速度超过0.6g时, 桩顶水平位移峰值不受液化层埋深的影响; 因地震荷载作用下粉细砂土层液化, 桩身加速度在该土层位置明显增大; 上部覆盖层压力作用使土层抗剪强度增大, 因此, 桩顶放大系数随着液化层深度的增加而增大, 且桩顶放大系数在Kobe波作用下最大, 5002波作用下最小, 砂土液化同时造成土层强度降低, 从而使桩身加速度在该土层出现放大效应; 桩身弯矩最大值均出现在液化层和非液化层分界处, 且在相同强度地震波作用下, 桩身弯矩最大值随着液化层埋深的增加呈增大趋势, 当地震加速度从0.30g增大到0.35g后, 桩身弯矩增幅为33.3%, 增幅最大; 不同类型地震波对桩基的破坏程度并无差异, 在加速度0.35g作用下, 桩基基频无变化, 但当地震波强度超过0.40g时, 桩基基频从1.65 Hz突降到0.45 Hz, 因砂土层液化产生侧向位移, 桩身剪切变形, 最终导致桩基损坏。综上所述, 当液化层较浅时, 应重点考虑地震波作用下过大的桩顶水平位移; 在桩基抗震设计时, 必须考虑液化层和非液化层分界处桩基的抗弯能力和液化层埋深的影响。   相似文献   

9.
采用ANSYS结构分析软件建立三维有限元实体模型,计算了地震作用下桩-土动力相互作用体系的动力反应.分析了体系的加速度反应、位移反应、桩身应变、桩身挠度、桩身弯矩、桩身剪力和桩土间接触压力等方面,并探讨了桩土刚度比、上部荷载等参数对桩-土相互作用体系的影响.  相似文献   

10.
为研究整体式桥台无缝桥中埋入式H型钢桩-桥台节点的受弯性能,通过建立节点的有限元模型,分析了桥台厚度、混凝土强度、钢桩朝向、埋深比、钢材强度和轴压比6个参数对节点受弯承载力和破坏模式的影响,并在此基础上,针对不同的破坏模式提出了节点受弯模型与承载力计算公式。研究结果表明:绕钢桩强轴弯曲的节点在埋深比小于2.0时发生桥台混凝土承压破坏,增大钢桩埋深比和混凝土强度等级可有效提高节点受弯承载力;绕钢桩强轴弯曲的节点在埋深比大于2.0时,或绕钢桩弱轴弯曲的节点在埋深比大于1.0时,发生钢桩屈服破坏,提高钢桩的钢材强度等级可提高节点受弯承载力;随着轴压比的增大,发生绕钢桩强轴屈服破坏的节点的受弯承载力明显降低,但轴压比对发生桥台混凝土承压破坏或冲切破坏的节点的受弯承载力的影响可以忽略;提出的节点受弯承载力计算方法能较为准确地预测不同破坏模式的埋入式H型钢桩-混凝土桥台节点的受弯承载力,计算值与有限元结果比值的均值和计算值与试验结果比值的均值为分别为0.981和0.941,因此,可用于该类型节点的受弯承载力计算和破坏模式分析;建议钢桩埋深不少于2.0倍桩宽与混凝土桥台厚度大于2.4倍桩宽,这样可有效避免桥台混凝土的承压破坏和桥台边缘混凝土的冲切破坏。   相似文献   

11.
为探明强震作用下断层上、下盘桥梁桩基动力响应差异,依托海南省海文大桥工程,通过振动台模型试验,研究了0.15g~0.60g地震动强度作用下断层上、下盘桩基的桩身加速度、桩顶相对位移、桩身弯矩响应规律差异与桩基损伤特征。研究结果表明:在不同地震动强度作用下,断层上、下盘桩基的桩顶加速度峰值相差0.291~0.488 m·s-2,桩顶加速度放大系数相差0.067~0.195,原因为断层对两侧岩土体影响范围存在差异与桩周岩土体“非线性”差异;随着地震动强度的增大,断层上、下盘桩基的桩顶相对位移差值逐渐增大,最大差值为0.77 mm;断层上、下盘桩基的弯矩最大值相差5.294~82.932 kN·m,且弯矩最大值均出现在覆盖层软硬土交界面与基岩面附近,原因在于下盘作为稳定盘,受上盘土体挤压作用,对下盘岩土体的振动剪切有一定抑制作用;地震动强度为0.35g时,断层上、下盘桩的最大弯矩均未超过抗弯承载力,满足海文大桥抗震设防烈度Ⅷ度(0.35g)的要求;地震动强度为0.35g~0.45g时,断层上盘桩的基频变化幅度较小,地震动强度为0.50g~0.60g时,断层上盘桩的基频显著降低,在桩顶与承台连接处、软硬土层界面与基岩面附近出现裂缝,说明此时桩基已发生损伤。可见,断层上盘桩基的桩身加速度峰值、桩顶相对位移与桩身弯矩动力响应指标均大于下盘桩基,断层上、下盘桩基动力响应变化规律差异显著,体现出显著的“断层上盘效应”,因此,强震作用下近断层桥梁桩基础抗震设计时,应着重考虑断层上盘桩基础的抗震承载能力。   相似文献   

12.
借助ANSYS结构有限元分析程序,研究了在各种基面参数下钢箱梁顶板顶面的横向弯拉应变、纵向弯拉应变和竖向位移,给出了各种基面参数对正交异性板钢箱梁顶板顶面的影响规律,并对结构基面进行了优化,为钢箱梁桥面铺装结构体系的优化设计提供了技术支撑.  相似文献   

13.
考虑不同加载方式与下翼缘宽度, 对3根带混凝土翼板的圆管翼缘钢-混凝土组合梁进行抗弯性能试验, 分析了试验梁的抗弯承载性能与破坏形态; 基于试验梁的抗弯特征, 推导了组合梁屈服弯矩和极限弯矩简化计算公式。研究结果表明: 试验梁均发生典型的塑性弯曲破坏, 稳定性良好; 达到极限承载力时, 梁端处上翼缘钢管与混凝土翼板相对滑移均小于0.43 mm, 试验梁体现了良好的协同工作性能; 随下翼缘宽度的增加, 试验梁刚度与承载力增大, 对于下翼缘宽度分别为150、260、300 mm的试验梁, 其屈服弯矩的比值为1∶1.44∶1.55, 极限承载力的比值为1∶1.31∶1.40;随着试验梁承受弯矩的增大, 当中性轴上升至混凝土翼板时, 钢管混凝土处于受拉状态, 可不考虑钢管与内填混凝土的套箍效应, 而当塑性中性轴位于上翼缘钢管混凝土内时, 可不计入该套箍作用对极限抗弯承载力的影响, 但其可促进延性的继续发展; 试验梁的位移延性系数均大于3.35, 延性较好; 屈服弯矩、极限弯矩理论计算值与试验值的比值分别为1.02~1.04、0.96~1.03, 吻合良好, 因此, 所出提出的简化理论计算公式简单、可靠。   相似文献   

14.
以重庆东水门长江大桥为依托,采用有限元软件Midas Civil建模,对结构整体进行控制计算,分析研究斜拉索刚度的变化对新型索辅梁桥成桥状态的主塔塔底弯矩、塔顶纵向位移、牛腿处下弦杆弯矩、主梁跨中轴力、跨中挠度、索力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号