首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
公路超高设计是公路几何设计中十分重要的一个方面,是道路设计者非常关注的问题之一.在阐述公路路线超高设计条件的基础上,对其关键问题即最大超高值选用、超高过渡段及缓和曲线长度问题进行详细分析.  相似文献   

2.
公路超高渐变方式探讨   总被引:1,自引:0,他引:1  
公路超高设计是公路几何设计中十分重要的方面,合理的超高设计是保证曲线路段行驶车辆的横向稳定和行车舒适安全的主要措施.在介绍近年来公路设计中常用的几种超高渐变方式的基础上,结合对公路路线设计规范相关条文的理解,分析了各种方式的利弊,以期为实际工作提供参考.  相似文献   

3.
为得到超高率对车辆方向控制的影响,以“道路-驾驶人-车辆”仿真系统为手段,以超高率/反超高率和行驶速度为试验变量,以小客车为仿真车型,以一条设计速度为30km/h的三级公路为试验对象,进行了三维路面上行车动力学的仿真试验.试验结果表明:①超高会减轻侧向力作用下轮胎的侧偏角,从而减低对方向盘角输入的需求;②超高会减小弯道上的轮胎拖距,并减弱前轮转动对车体的抬升作用,明显降低曲线行驶时的操舵矩,从而使操纵变得容易;③超高也会增加车辆的侧倾摆动(朝曲线内侧),对于低速车辆,其摆动会更明显;④小半径曲线上的双向路拱或者反超高会增加转向需求,当车速较高时,其方向将难以控制.  相似文献   

4.
刘志宏 《北方交通》2002,25(4):34-35
互通立交曲线匝道的超高设置是互通立交设计中的重要一环,尤其是匝道端部附近的超高设置,在立交设计中也堪称难点.虽然规范中对此都有明确规定,但本文中将对此更详细地加以总结归纳,以供设计者参考.  相似文献   

5.
为了揭示多车道高速公路超高过渡段积水分布规律,基于流体动力学理论,选取典型多车道高速公路超高过渡段设计参数,利用道路BIM设计软件建立了40组三维道路模型;分析了路面积水量和排水设施径流量的关系,建立了考虑排水设施与路面构造深度影响的降雨模拟方案;采用离散相模型和多相流模型耦合,模拟了降雨条件下的路面积水状态;分析了不同组合参数下的超高过渡段积水厚度数据,得到了合成坡度、道路宽度、降雨强度与超高渐变率对积水厚度的影响模式,计算了各车道最大积水厚度,分析了六车道、八车道高速公路积水横向分布规律。研究结果表明:积水厚度与合成坡度、超高渐变率负相关,与降雨强度、道路宽度正相关,其中降雨强度对积水厚度的影响最大,超高渐变率对积水厚度的影响最小;合成坡度为2.02%~8.54%,降雨强度为1~5 mm·min-1时,多车道高速公路超高过渡段最小积水厚度为0.58 mm,最大达到28.35 mm;当降雨强度为5 mm·min-1时,高速公路超高过渡段内外侧车道最大积水厚度差异明显,六车道由内侧车道到外侧车道的最大积水厚度比例为1.0∶3.1∶3.3,八车道为1.00∶0.96∶1.03∶1.36;多车道高速公路超高过渡段积水厚度峰值先出现在道路中间附近,然后向外侧移动,最大积水厚度一般出现在外侧车道。   相似文献   

6.
公路超高设计计算中较有难度的是超高缓和段长度的确定、公式中参数的确定以及超高缓和段长度小于缓和曲线长度时超高缓和段的设置问题等。本文就这些问题从行车受力、路容美观、路面排水及施工可行性等方面进行了分析和讨论,阐明了设计计算的步骤和方法。  相似文献   

7.
车辆以一定的车速在圆曲线上行驶,车辆所产生的离心力由路面的横向力系数及超高来共同抵消,不同半径圆曲线对应不同的超高数值和横向力系数,横向力系数与圆曲线半径的倒数成非对称竖曲线关系.  相似文献   

8.
通过对超高缓和段合成坡度的分析,提出了在最小超高渐变率的条件下部分超高缓和段长度的确定方法。通过分析计算超高缓和段合成坡度(<0.5%)的面积,阐述了以其为设计控制指标的合理性,对1/330的限制及不同旋转方式进了分析。  相似文献   

9.
根据高速公路超高的方式和形成过程,结合双车道公路超高设计计算方法,提出了高速公路超高设计的计算方法,并给出了实际算例.  相似文献   

10.
超高设计是公路设计中非常重要的设计内容,结合新标准研究了超高缓和段长度的确定方法、超高的过渡方式,以及绕行车道内边缘旋转时超高的计算方法,并深入讨论了当超高渐变率小于1/330情况下的超高计算方法。  相似文献   

11.
车辆在弯道超高路段行驶时会受到离心力作用,而现行路面设计方法未考虑离心力的影响。工程实践发现,在沥青路面弯道超高路段病害较多。就这分析了路面超高路段的力学特征,推导出离心力导致轮载不平衡的计算公式。利用有限元软件,以高速公路典型沥青路面结构为例,定量分析了离心力对路面力学响应的影响。计算表明:考虑离心力后路面的力学响应均大于不考虑离心力的情况,且速度越高影响程度越大。可见离心力的存在和现行设计方法的不足是导致路面弯道薄弱环节的原因。  相似文献   

12.
车辆在弯道超高路段行驶时会受到离心力作用,而现行路面设计方法未考虑离心力的影响。工程实践发现,在沥青路面弯道超高路段病害较多。就这分析了路面超高路段的力学特征,推导出离心力导致轮载不平衡的计算公式。利用有限元软件,以高速公路典型沥青路面结构为例,定量分析了离心力对路面力学响应的影响。计算表明:考虑离心力后路面的力学响应均大于不考虑离心力的情况,且速度越高影响程度越大。可见离心力的存在和现行设计方法的不足是导致路面弯道薄弱环节的原因。  相似文献   

13.
为了揭示高速公路不同超高过渡段线形指标下小型客车滑水速度变化规律,考虑小型客车滑水过程轮胎受力特征,分析了滑水速度与水膜厚度和超高过渡段几何线形的作用关系;应用多元线性回归和流体力学仿真建立了高速公路超高过渡段小型客车滑水速度量化模型,计算了降雨强度、纵坡坡度、超高渐变率等多变量组合下的小型客车临界滑水速度;以典型双向四车道高速公路超高过渡段为例,分析了降雨强度、纵坡坡度、超高渐变率对小型客车滑水速度的影响规律,并给出了超高过渡段小型客车限制速度建议值。研究结果表明:小型客车滑水速度最大值出现在纵坡坡度为0.3%、超高渐变率为1/200、降雨强度为20 mm·h-1组合工况下,为115.5 km·h-1,滑水速度最小值出现在纵坡坡度为3.0%、超高渐变率为1/330、降雨强度为80 mm·h-1组合工况下,为99.3 km·h-1;在降雨强度和超高渐变率一定的情况下,随着纵坡坡度增大,滑水速度逐渐减小,当纵坡坡度由0.3%增加到3.0%时,滑水速度减小2.68%;在降雨强度和纵坡坡度一定条件下,随着超高渐变率增大,滑水速度逐渐增大,当超高渐变率从1/330增加到1/200时,滑水速度上升了2.25%;增加纵坡坡度会降低滑水速度,但当降雨强度增加到一定程度,纵坡坡度、超高渐变率对滑水速度的影响趋于平缓;当降雨强度为20~80 mm·h-1时,双向四车道高速公路限速建议值为95.0~115.0 km·h-1,但不应大于其设计速度。   相似文献   

14.
车速是导致公路平曲线路段路侧事故频发的关键因素,为降低路侧事故率,需进行车速限制研究. 选取8 个路侧事故风险指标进行PC-crash 仿真试验,共收集12 800 条数据. 采用路径分析方法筛选得到显著性风险指标,将其纳入贝叶斯逐步判别分析中,构建对应不同车型的路侧事故判别函数,提出对应不同道路几何设计要素的最高安全车速计算模型. 结果显示:显著性风险指标对路侧事故影响程度,由大到小依次为车速、圆曲线半径、车型、路面附着系数、路肩宽度、纵坡坡度和超高横坡度;道路线形条件越好,保证不发生路侧事故的最高安全限速值越大;在相同道路设计指标下,小型客车最高限速值大于货车最高限速值.  相似文献   

15.
在交通荷载的作用下,旧路面对沥青加铺层形成的反射裂缝是造成沥青路面病害的主要原因之一。研究了沥青加铺层的厚度、弹性模量、综合地基的弹性模量在对称荷载作用下对沥青加铺层的荷载应力影响变化规律,发现裂缝尖端产生破坏取决于尖端是受压还是受拉,进而提出加铺层设计的设计参数。  相似文献   

16.
针对340省道金坛段超载严重,交通量的分段和分幅差异较大的现状,对原设计方案进行了优化,考虑了超载因素对路面设计参数的影响,对路面结构分段、分幅采用不同的设计方案,具有一定的针对性,满足道路使用要求。  相似文献   

17.
做好山区公路弯道最小半径指标设计是提升山区公路安全性的重要举措.通过对车辆弯道行驶动力学分析,以事故临界状态为限制建立安全模型,讨论了在不同设计车速下,弯道圆曲线最小半径与超高、横向附着系数等参数的关系,通过Carsim仿真软件验证了安全模型的正确性.理论分析及仿真结果表明,弯道设计应重点考虑避免车辆发生横向侧滑失稳,弯道最小半径与超高、横向附着系数值成反比,与车速呈正比,并与车型参数无关,进而提出山区公路弯道最小半径指标优化建议.在实际设计应用中,还应根据预测弯道最大运行车速值和横向附着系数值对最小半径指标进行校核.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号