首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
岩体中含有大量的不连续面,如层面、节理、裂隙、软弱夹层、岩脉和断层破碎带等,传统的瑞典条分法等往往难以应用于岩质边坡的稳定性评价。本文基于强度折减法,采用有限元软件ANSYS研究了高陡岩质边坡的稳定性分析方法。对实际工点的分析结果表明,该方法能够较好地反映出高陡岩质边坡具有拉裂性质的破坏机理,未加固工点边坡安全系数为1.09;加固边坡的安全系数为1.30,表明边坡病害得到了根治。此外,采用刷方和预应力锚索加固相结合的方案可以有效控制高陡岩质边坡变形,可供类似工程借鉴和参考。  相似文献   

2.
确定高陡岩质边坡的稳定坡角涉及桥梁墩台安全,是一项复杂的岩体工程问题。现有规范和研究在涉及到桥基荷载作用下岩体边坡稳定性分析及稳定坡角确定方面存在缺憾。以西成高铁养家河大桥成都侧桥基边坡为例,采用FLAC3D数值分析方法,对其不同工况下的稳定性进行分析,计算出边坡的稳定坡角。在此基础上,结合现场岩体情况,综合确定桥基边坡的稳定坡角,并得到工程的验证。研究结果表明,对于强度控制型高陡岩质边坡,首先通过数值计算确定稳定坡角,其次分析现场实测自然边坡高度、坡度、岩体产状、节理发育程度等因素,最后综合确定桥基边坡的稳定坡角。工程验证表明,该方法确定的稳定坡角既安全可靠,又经济合理,是一种有益的尝试。  相似文献   

3.
针对雅砻江卡拉—杨房沟水电站交通专用公路施工中的隧道,穿越崩塌高风险区高陡边坡的稳定与结构安全等问题,借鉴以往的边坡研究成果并结合现场实际情况,对卡杨公路高陡边坡隧道施工前的整体稳定性进行了分析。找出边坡最危险滑面并计算出最小安全系数,分析了在山体中不同空间位置布设隧道时隧道围岩与边坡岩体变形及应力变化特征。结果表明:当隧道洞口偏压穿越边坡时,隧道及边坡变形均比较大,隧道围岩及边坡岩体应力会出现不对称现象,最好在隧道施工前采取一定的加固措施。当隧道正常穿越边坡,不存在偏压时,岩体应力及变形基本正常。  相似文献   

4.
渝黔铁路横穿我国西南深山峡谷区,地质条件复杂,其中乌江大桥为线路制约性工程之一。桥址区边坡高陡,节理发育,尤其是左岸发育贯通裂隙,边坡地质问题突出。现场调查和二维离散元模拟计算结果表明,桥梁修建后对边坡岩体特别是桥墩基座附近的岩体造成一定破坏,并预测了崩塌落石的范围;进而采用强度折减法对边坡稳定性进行了有限元分析,分析结果显示,岸坡整体稳定性较好,桥梁荷载作用下整体稳定性系数1.40,但局部会产生破坏。建议对桥基下方塑性区范围岩体予以加固。  相似文献   

5.
高陡边坡桥基安全距离研究   总被引:1,自引:0,他引:1  
研究目的:高陡边坡桥基位置的确定不仅关系到高边坡的稳定和桥梁的安全,也直接关系到整个桥梁的技术指标和造价。而目前相应的规范及手册中,对高陡边坡桥基位置没有明确的规定。研究方法:荷载作用下高陡边坡岩体力学行为特征是桥基位置确定的基础。利用数值分析方法,分析不同边坡几何状态下荷载对边坡岩体应力的影响。研究结果:根据荷载作用下边坡岩体应力影响范围的变化特征,提出高陡边坡桥基安全距离的确定原则。边坡岩体应力影响范围主要与荷载强度、桥基宽度、边坡坡度以及桥基水平距离等因素有关。根据坡面岩体应力影响系数最大值与各影响因素的关系,再利用岩体质量对应力影响系数进行限定,提出高陡边坡桥基安全距离的确定公式。研究结论:工程实践表明,用本文方法来确定高陡边坡桥基位置是方便的、适用的。  相似文献   

6.
分析工程地质条件、坡体结构特征、变形破坏模式,建立桥台边坡地质概化模型。计算采用莫尔—库仑屈服条件的弹塑性模型,分析边坡的变形模式及范围,进行稳定性评价。阐述变形稳定性的位移场特征和剪应变增量特征,提出应用数值模拟技术研究边坡的变形和破坏特征,直观反映边坡变形及应力变化全过程等结论。建议桥基开挖至设计标高后及时封底,防止泥岩风化或浸水软化而降低力学强度。  相似文献   

7.
研究目的:赤平投影可通过空间投影关系直观反映不同结构面的空间组合关系,适用岩质边坡稳定性定性评价。块体理论可对不同破坏类型的结构体稳定性进行定量计算。本文将基于吉尔木隧道出口边坡的现场调查,分析该边坡岩体结构类型和基本破坏模式,并利用Barton模型估计岩体结构面强度参数。在此基础上,结合赤平投影理论和块体理论分析该边坡潜在失稳岩体的结构面组合关系,并确定各模式块体的稳定性系数,以期为边坡防护设计提供一定的指导。研究结论:(1)通过Barton模型计算结构面的力学指标表明:在法向应力为2 MPa时,结构面的内聚力C=0. 12 MPa,内摩擦角φ=34°~36°;(2)隧道出口边坡岩体主要破坏模式有倾倒式破坏、楔形体滑动破坏和平面滑动破坏,其中倾倒式破坏主要受直立卸荷裂隙控制;平面滑动破坏主要为沿与坡面近平行的长大卸荷裂隙滑动和沿岩层层面滑动;楔形体破坏主要受到了岩层层面、近直立卸荷裂隙和密集节理面的共同控制;(3)赤平投影分析表明:边坡岩体沿单滑面破坏的块体1和块体2以及沿双滑面交线破坏的块体12是不稳定的,其中块体2的稳定性最差;(4) Barton模型、赤平投影及块体理论相结合的岩质边坡稳定性分析方法具有准确和快捷的优点,该方法在高陡岩质边坡分析中具有良好的应用前景。  相似文献   

8.
根据分析与计算,隧道明洞高陡岩质边坡通常受构造影响,岩体不利结构面发育,坡面小型楔体分布,在外力作用下长期稳定性较差,可能沿临空面形成危岩落石甚至崩塌等灾害。工程设计中宜采取延长明洞,增加明洞回填厚度,设置预应力锚索、防护网及自动化监测系统等综合措施进行加固防护与变形监测,以确保施工及运营的长期安全。  相似文献   

9.
研究目的:拟建的某铁路客运专线经过地段山高谷深,沟壑纵横,形成了一些桥梁墩台基础置于高陡岸坡上的高边坡工程。桥基荷载作用下高陡边坡的稳定性分析目前没有公认合理的方法。以某铁路客运专线桥基高边坡为例,运用ANSYS有限元分析软件,对荷载作用下的高边坡岩体力学行为特征和稳定性进行三维有限元分析,研究结果可为桥梁高边坡设计及稳定性评价提供参考。研究结论:结果表明,荷载对坡面岩体应力的影响很小,边坡的位移量很小,仅左岸坡脚处较小范围内发生塑性破坏,其它地方均无塑性破坏区。在目前的设计条件下,大桥左右岸边坡安全系数分别为1.85和2.20,大桥边坡整体是稳定的。  相似文献   

10.
新建板布河大桥为瓮马铁路南北延伸线的控制工程,为188 m上承式钢筋混凝土铁路拱桥;大桥跨板布河深切V型谷,两岸岸坡陡峭,岸坡高达105~116 m,超过百米,地层为第三系(E)巨厚层状钙质角砾岩,弱风化,岩质坚硬,两岸岸坡卸荷裂隙发育。通过综合勘察手段查明了板布河大桥场区工程地质条件,综合多种分析方法对高陡岸坡的稳定性进行分析,通过施工开挖后对边坡进行了再次调查分析,百米高陡岸坡卸荷裂隙发育影响其承载力及岸坡稳定性,应加强施工地质核查工作;并针对计算结果进行了边坡防护设计,采取了锚索、锚杆对板布河大桥高陡边坡进行防护设计,锚索设计锚固力1 050 kN,可为西南山区硬质岩高陡边坡稳定性分析提供参考。  相似文献   

11.
拟建中尼铁路夏木德至加德满都段穿越喜马拉雅山脉,具有新构造运动及地震强烈、构造应力场强烈、岩浆活动强烈、水热活动强烈、重力夷平面下切强烈、物理风化强烈的特点。活跃的内外力地质作用导致该区工程地质条件极其复杂,边坡稳定性、泥石流水毁、高地温热害、高地应力下硬质岩岩爆、软岩大变形及深大活动断裂错断效应构成了控制线路方案的主要工程地质问题。研究认为:夏木德经吉隆至加德满都(AK)方案走行于吉隆藏布峡谷区,自然坡降相对较缓,有设口岸站条件,受地震影响较小,线路走向与主应力方向近乎平行。夏木德经聂拉木至加德满都(A1K)方案走行于波曲高山峡谷区,自然坡降相对较陡,设站条件困难,地层虽以硬质岩为主,但活跃的内外力作用,导致主要地质问题更为发育。从边坡稳定性、泥石流水毁、高地温热害、高地应力下硬岩岩爆及软岩大变形主要地质问题综合考虑,AK方案优于A1K方案。  相似文献   

12.
针对蒙华铁路段家坪近水平砂岩隧道高地应力条件下初期支护变形破坏的问题,应用地应力测试技术获得隧道围岩初始地应力分布规律,对初期支护变形破坏特征进行分析,提出了高应力水平地层支护设计对策,并应用于工程实践。研究结果表明:隧道区段处于以水平构造应力为主的高地应力状态且最大水平主应力方向不利于隧道的稳定;应力释放导致隧道原有初期支护开裂变形,混凝土破坏为压剪破坏,格栅钢架主筋破坏为受压失稳;采取增强支护参数、增设缓冲层、加装阻尼器等技术措施成功解决了高地应力水平岩层隧道初期支护变形破坏问题。  相似文献   

13.
为给西南山区公路岩质边坡危岩体治理工程提供依据,利用Rockfall软件模拟典型危岩体落石运动特征,采用静力平衡法对其形成机理、破坏模式、稳定性进行定性和定量分析,并提出合理的治理措施.研究表明:(1)危岩体形成过程是多种工程地质条件长期相互作用的结果;(2)稳定性计算显示,暴雨和地震会加速危岩体的形成过程并触发其失稳...  相似文献   

14.
通过现场调查分析及运用赤平投影方法,对在建的云桂高铁西洋河特大桥河谷两岸的岸坡岩体及其结构面特征、岸坡岩体的变形破坏模式等进行了深入的研究。得出:受岩体结构面切割的影响,外力作用下河谷岸坡岩体变形破坏模式为倾倒崩塌或崩落式破坏;通过赤平投影分析及对岩体组合结构面稳定系数计算表明,河谷两岸未见大的不稳定块体,自然状态下河谷两岸岸坡稳定性较好。  相似文献   

15.
成都—兰州铁路云屯堡隧道已施工洞段出现多处软岩大变形,严重影响了施工安全及进度。从地层岩性、岩体结构、地应力、地下水等方面对云屯堡隧道软岩大变形特征及地质成因进行了分析。结果表明:该隧道软岩大变形具有总变形量大、变形持续时间长、空间分布不均匀的特征;隧道围岩完整性差、强度低是发生大变形的根本原因,较高地应力和发育的地下水造成强度应力比进一步降低,千枚岩、炭质千枚岩地段易发生轻微~中等大变形。  相似文献   

16.
某特大桥左岸支沟侧为顺层边坡,其稳定性是大桥建设的基础。采用地质调绘、钻探、硐探、钻孔全景摄像等手段查清边坡地质特征,通过工程地质和赤平投影分析初步判定边坡破坏形式,利用FLAC、UDEC、3DEC软件模拟分析边坡岩体的变形破坏规律,采用极限平衡法计算分析边坡、危岩体及堆积体的稳定性。研究结果表明:二级斜坡、三级斜坡分为基岩裸露区和深厚堆积体区2个区段,潜在破坏模式为平面滑动破坏及楔形滑动破坏;边坡整体处于稳定状态,强降雨+地震工况下,高为15,20 m的楔形体可能沿坡面及陡崖方向发生滑动破坏,二级斜坡顶部危岩体可能发生失稳、底部堆积体处于欠稳定状态;建议基础埋置于稳定的完整岩体一定深度,强化桥基岩体和锚碇围岩的加固处理,并加强抗震和边坡防护设计。  相似文献   

17.
研究目的:沪昆客专贵州西段沙坡特大桥4#~10#墩左侧为高陡边坡,属典型的缓倾角顺层边坡,勘察阶段定性为崩塌落石工点,施工中发现该工点的崩塌落石规模和工程危害远超过原先的认识。本文基于无人机航拍技术,通过综合勘察和地质分析,查明崩塌落石的成因和斜坡变形破坏模式,并制定出切实可行的工程措施。研究结论:(1)沙坡特大桥4#~10#墩左侧为缓倾角顺层高陡边坡,崩塌落石之所以严重,系因滑移-压致拉裂变形破坏;(2)该高陡边坡的整治范围,重点是距陡崖约35 m的贯通节理附近至崖壁间,按高度分段设防,采取清方、锚索(地梁)、喷锚网、主动防护网、锚索桩、防撞墙、截排水沟等措施进行综合整治是适宜的;(3)线路傍山选线,应远离高陡岸(边)坡,对上硬下软的缓倾角顺层高陡边坡更应引起足够重视,以避免大规模崩塌落石的危害;(4)无人机具有从上往下拍摄的优势,用于复杂艰险山区不良地质勘察,可以起到事半功倍的效果;(5)本研究成果用于沙坡特大桥4#~10#墩左侧高陡边坡的整治,对于铁路、公路高陡岸坡崩塌落石发育区的选线、勘察和设计具有借鉴意义。  相似文献   

18.
内昆铁路李子沟大桥是全线控制性工程,其11号墩高陡边坡的整体稳定性系疑难问题,通过对李子沟的区域地貌结构和河谷地貌特征及其相关沉积的观察分析,确认11号墩后倚山咀系李子沟高阶地,非不良地质堆积体,整体稳定。11号墩边坡加固设计方案可行。  相似文献   

19.
内昆铁路李子沟大桥是全线控制性工程,其11号墩高陡边坡的整体稳定性系疑难问题。通过对李子沟的区域地貌结构和河谷地貌特征及其相关沉积的观察分析,确认11号墩后倚山咀系李子沟高阶地,非不良地质堆积体,整体稳定。11号墩边坡加固设计方案可行。  相似文献   

20.
西成高铁穿越秦岭山区,多处桥台位于高陡边坡上,其中东崂峪大桥西安台坡高约120 m,基岩裸露。为评价该边坡的稳定性,首先对该边坡进行了地质调查,并取代表性样本进行了岩石试验,然后运用总结归纳、极限平衡分析法进行理论分析,掌握了该边坡的地形地貌、地层岩性、地质构造,以及该边坡代表性岩样的饱和抗压强度、抗剪切强度、黏聚力、内摩擦角等物理力学指标,确定了边坡稳定性的影响因素,计算得出该高陡岩质边坡的稳定系数为1. 05,边坡稳定坡角为55. 4°。施工阶段桥台基础开挖后,验证了之前计算的稳定坡角基本合理,桥台基础设置满足工程需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号